Given J(1, 1), K(3, 1), L(3, -4), and M(1, -4) and that J'(-1, 5), K'(1, 5), L'(1, 0), and M'(-1, 0). What is the rule that tran
anastassius [24]
(x; y) -> (x - 2; y + 4)
J(1; 1) ⇒ J'(1 - 2; 1 + 4) = (-1; 5)
K(3; 1) ⇒ K'(3 - 2; 1 + 4) = (1; 5)
L(3;-4) ⇒ L'(3 - 2; -4 + 4) = (1; 0)
M(1;-4) ⇒ M'(1 - 2;-4 + 4) = (-1; 0)
1) (3-x) x (3+x)
2) 5(5-x) x (5+x)
3) (3v-wy) x (3v+wy)
4) 2(k-m) x (k+m) x (k^2+m^2)
5) (ab-4c) x (ab+4c)
Brainliest?
Answer:
C + 52 ≥ 78
Step-by-step explanation:
Since Sam needs at least 78 credits to a college degree, the inequality is represented by a more than or equal to symbol (≥).
Answer:
Netfixxxxxx
Step-by-step explanation: