Answer
Step-by-step explanation:
help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ):help much appreciated ): hope this helps leave a heart c:
Answer: A. infinite solutions
B. no solution
C. one solution
Step-by-step explanation:
A. firstly we distribute: -2x-6=-2x-6
since they are the same it is infinite solutions.
B. firstly we distribute: 4x-4=1/2x-4
=2x=0
x=0
C. 3x-7=10+4x
x=17
Answer:
hi
Step-by-step explanation:
for example

in the second one you should multiple 5 and 1 then add 4
10 I think because 10+10+8+8=36 and 8 is 2 less than 10
a=2 b=3 and c=4. then,
<em>a2+2abc+b2+c2</em>
<em>a2+2abc+b2+c2</em><em>=</em><em> </em><em>2</em><em>^</em><em>2</em><em>+</em><em>2</em><em>×</em><em>2</em><em>×</em><em>3</em><em>×</em><em>4</em><em>+</em><em>3</em><em>^</em><em>2</em><em>+</em><em>4</em><em>^</em><em>2</em>
<em>(</em><em>replace</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>a</em><em>,</em><em> </em><em>b</em><em>,</em><em> </em><em>c</em><em> </em><em>by</em><em>2</em><em>,</em><em>3</em><em>,</em><em>4</em><em> </em><em>respectively</em><em> </em><em>tgen</em><em> </em><em>solve</em><em>)</em>
<em>=</em><em> </em><em>4</em><em>+</em><em>4</em><em>8</em><em>+</em><em>9</em><em>+</em><em>1</em><em>6</em>
<em>=</em><em> </em><em>7</em><em>7</em><em>…</em><em>…</em><em>…</em><em>…</em><em>…</em><em>…</em>
<em> </em><em>Therefore</em><em>,</em><em> </em><em>7</em><em>7</em><em> </em><em>is</em><em> </em><em>correct</em><em> </em><em>answer</em><em>.</em>