9514 1404 393
Answer:
671 feet
Step-by-step explanation:
There are a couple of ways to figure this. One is to use a sort of shortcut equation to find the distance traveled (d) by an object when subject to some initial velocity (v) and acceleration (a). Here the acceleration due to gravity is -32 ft/s².
v² = 2ad
d = v²/(2a) = (192 ft/s)^2/(2·32 ft/s²) = 576 ft
This height is in addition to the starting height of 95 ft, so the arrow's maximum height is ...
max height = 95 ft + 576 ft = 671 ft
__
Another way to work this problem is to start with the equation for ballistic motion. Filling in the given initial velocity and height, we have ...
h(t) = -16t^2 +192t +95
The time the arrow reaches the maximum height is the time representing the axis of symmetry of the parabola:
t = -(192)/(2(-16)) = 6
Then the maximum height is ...
h(6) = -16·6^2 +192·6 +95 = 671
The maximum height is 671 feet.
__
<em>Additional comment</em>
For the standard-form quadratic ...
y = ax^2 +bx +c
The axis of symmetry is ...
x = -b/(2a)
Answer:
The required solution is (5.75,-0.5). It can be written as
.
Step-by-step explanation:
The given equations are
.... (1)
.... (2)
Multiply the equation (2) by 2.
.... (3)
Subtract equation (1) from equation (3).




Put this value in equation (1).




Therefore the required solution is (5.75,-0.5). It can be written as
.
X=8
Here my
Work message me if u have questions
Answer: The figure is a regular hexagon.
Step-by-step explanation: