Answer:
2(d - 3) is the equation. You cannot solve for d. You can only simplify it
Answer:
B
Step-by-step explanation:
The equation of a circle is
(x-h)^2 + (y-k)^2 = r^2
h= 9, k = -7
r = 2, so r^2 = 4.
We now know that the equation must equal 4, so we can rule out answers A and C.
Plug in the values for h and k to get
(x-9)^2 + (y+7)^2 = 4
Choice B is correct!
1
-
2
Put it like that and there’s your constant
we are given
![\frac{\sqrt[3]{7}\sqrt{7}}{\sqrt[6]{7^5}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Csqrt%5B3%5D%7B7%7D%5Csqrt%7B7%7D%7D%7B%5Csqrt%5B6%5D%7B7%5E5%7D%7D%20%20%20%20%20)
we can write it in terms of exponents
![\frac{7^{\frac{1}{3}}*7^{\frac{1}{2}}}{7^{\frac{5}{6}}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B7%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2A7%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B7%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%7D%20%20%20%20%20)
Firstly , we will simplify numerator
![\frac{7^{\frac{1}{3}+\frac{1}{2}}}{7^{\frac{5}{6}}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B7%5E%7B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B7%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%7D%20%20%20%20%20)
now, we can add exponents
![\frac{7^{\frac{5}{6}}}{7^{\frac{5}{6}}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B7%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%7D%7B7%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%7D%20%20%20%20%20)
we can cancel it
and we get
............Answer
If we just have
![y = \cos x](https://tex.z-dn.net/?f=y%20%3D%20%5Ccos%20x)
that's an amplitude of 1 and a period of ![2\pi](https://tex.z-dn.net/?f=2%5Cpi)
Let's modify this step by step.
Amplitude of 4. Four times the amplitude means a factor of 4 on the outside.
![y = 4 \cos x](https://tex.z-dn.net/?f=y%20%3D%204%20%5Ccos%20x)
Period of π. Double the period means a factor of 2 on the inside.
![y = 4 \cos(2x)](https://tex.z-dn.net/?f=y%20%3D%204%20%5Ccos%282x%29)
Horizontal shift of π/2 to the left. To the left means adding a positive number to x. The question appear ambiguous. It's not clear to me if we add to x or 2x; let's make it
![y = 4 \cos(2(x + \frac \pi 2))](https://tex.z-dn.net/?f=y%20%3D%204%20%5Ccos%282%28x%20%2B%20%5Cfrac%20%5Cpi%202%29%29)
Vertical shift of 3:
![y = 3 + 4 \cos(2(x + \frac \pi 2))](https://tex.z-dn.net/?f=y%20%3D%203%20%2B%204%20%5Ccos%282%28x%20%2B%20%5Cfrac%20%5Cpi%202%29%29)
![y = 3 + 4 \cos(2x + \pi)](https://tex.z-dn.net/?f=y%20%3D%203%20%2B%204%20%5Ccos%282x%20%2B%20%20%5Cpi%29)
Depending on the interpretation of the phase shift, that pi may be a pi/2.
Answer: ![3 + 4 \cos(2x + \pi)](https://tex.z-dn.net/?f=3%20%2B%204%20%5Ccos%282x%20%2B%20%20%5Cpi%29)