The Answer is C, my good friend.
To do this, you got to square 256.
The square root of 256 is 16.
Therefore, there are 16 small squares on each edge of the mosaic.
Kinda proof:
o o o o O
o o o o O
o o o o O
o o o o O
o o o o O
25 squares. Square root is 5. 5 along each edge. My work shares same concept.
Extremely unnecessary proof:
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
There are 256 squares, and you can count 16 on each edge. this shows 16 times 16, or 16 squared, which is 256.
I think the answer is option e mn
One is 55%
Two is 190%
Three is 57
I believe you haven't included the system of equations for us to solve.
However, I will tell you that you need to solve for one variable in an equation and substitute that into the other equation.
For example:
x = yz; z = x/y
a = zb; a = (x/y)b
Hope this helps!