1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
9

Is this a good drawing??

Mathematics
2 answers:
polet [3.4K]3 years ago
5 0
I doesn’t matter how bad the drawing it always good to me
Alexxandr [17]3 years ago
3 0

Answer:

I dont see a drawing???

Step-by-step explanation:

You might be interested in
The dot plot above identifies the number of pets living with each of 20 families in an apartment building. What fraction of the
ludmilkaskok [199]

Step-by-step explanation:

refer the above attachment

5 0
2 years ago
<img src="https://tex.z-dn.net/?f=%20%20%5Csf%20%5Chuge%7B%20question%20%5Chookleftarrow%7D" id="TexFormula1" title=" \sf \huge
BabaBlast [244]

\underline{\bf{Given \:equation:-}}

\\ \sf{:}\dashrightarrow ax^2+by+c=0

\sf Let\:roots\;of\:the\: equation\:be\:\alpha\:and\beta.

\sf We\:know,

\boxed{\sf sum\:of\:roots=\alpha+\beta=\dfrac{-b}{a}}

\boxed{\sf Product\:of\:roots=\alpha\beta=\dfrac{c}{a}}

\underline{\large{\bf Identities\:used:-}}

\boxed{\sf (a+b)^2=a^2+2ab+b^2}

\boxed{\sf (√a)^2=a}

\boxed{\sf \sqrt{a}\sqrt{b}=\sqrt{ab}}

\boxed{\sf \sqrt{\sqrt{a}}=a}

\underline{\bf Final\: Solution:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}

\bull\sf Apply\: Squares

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2= (\sqrt{\alpha})^2+2\sqrt{\alpha}\sqrt{\beta}+(\sqrt{\beta})^2

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2 \alpha+\beta+2\sqrt{\alpha\beta}

\bull\sf Put\:values

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2=\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\sqrt{\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}}

\bull\sf Simplify

\\ \sf{:}\dashrightarrow \underline{\boxed{\bf {\sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\sqrt{\dfrac{-b}{a}}+\sqrt{2}\dfrac{c}{a}}}}

\underline{\bf More\: simplification:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{-b}}{\sqrt{a}}+\dfrac{c\sqrt{2}}{a}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{a}\sqrt{-b}+c\sqrt{2}}{a}

\underline{\Large{\bf Simplified\: Answer:-}}

\\ \sf{:}\dashrightarrow\underline{\boxed{\bf{ \sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\dfrac{\sqrt{-ab}+c\sqrt{2}}{a}}}}

5 0
2 years ago
Read 2 more answers
A painter leans a 15 ft ladder against a building. The base of the ladder is 6 ft from the building. To the nearest foot, how hi
stiv31 [10]
Using the Pythagoras theorem 

15^2 = x^2 + h^2   where h = height of ladder on the nuiding

h^2 = 15^2 - 6^2  =  189

 = 13.75 ft to nearest hundredth
3 0
3 years ago
Read 2 more answers
The area of rectangular is 64m the length of the pool is 12 m less that the width .The situation can be represented by the equat
beks73 [17]

Answer:

Width = 16 m

Length = 4 m

Step-by-step explanation:

The area of rectangular is 64m² the length of the pool is 12 m less that the width . The situation can be represented by the equation x

Area of a rectangle = Length × Width

L = W - 12

Hence:

64 = (W - 12) × W

64 = W² - 12W

W² - 12W - 64 = 0

Factor using

(W + 4)(W - 16) = 0

Width = 16m

Length = W - 12

Length = 16 m - 12 m

= 4 m

6 0
3 years ago
HELP. WILL MARK BRAINLIEST. WHAT IS THE CORRECT ANSWER?
kari74 [83]

7/8 * cm/ month * 5 months =

35/8 cm

4 3/8 cm

Answer: 4  3/8 cm

6 0
4 years ago
Read 2 more answers
Other questions:
  • Question 13
    12·2 answers
  • 14x^2-8x+3 + -6x^2+7x-11
    14·2 answers
  • Find two consecutive odd integers such that the sum of the first and three times the second is 98
    10·1 answer
  • Can someone help me with this please <br> I’ll mark as brainliest
    6·1 answer
  • Pls help Will give u brainliest
    11·1 answer
  • Solve the equation 2/3(9+x)=−5(4−x).
    14·2 answers
  • Please help!!
    7·1 answer
  • Can you solve this problem
    10·2 answers
  • HURRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY PLEASEEEEEEEEEEEEEEEEEEEEE
    7·2 answers
  • 2 tickets cost $14. How many tickets can you buy with $63?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!