]Eigenvectors are found by the equation

implying that

. We then can write:
And:
Gives us the characteristic polynomial:

So, solving for each eigenvector subspace:
![\left [ \begin{array}{cc} 4 & 2 \\ 5 & 1 \end{array} \right ] \left [ \begin{array}{c} x \\ y \end{array} \right ] = \left [ \begin{array}{c} -x \\ -y \end{array} \right ]](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%204%20%26%202%20%5C%5C%205%20%26%201%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20x%20%5C%5C%20y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%3D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20-x%20%5C%5C%20-y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20)
Gives us the system of equations:
Producing the subspace along the line

We can see then that 3 is the answer.
Consider
.
Given:

To find:
The length of BC.
Solution:
We have,

We know that the corresponding parts of congruent triangles are congruent (CPCTC).
(CPCTC)

The length of BC is 5 m. Therefore, the correct option is A.
The slope of this line is -1/6.
2 Point: (6,2) (-6,6)
x₁ y₁ x₂ y₂
Remember:
rise change in y y₂ - y₁ 6 - 2 4
---------- = ------------------- = ------------- = ----------- = ----------
run change in x x₂ - x₁ -6 - 6 -12
Simplify 4/-12
4 ÷ 4 1
------- = ------------- = -1/3
-12 ÷ 4 -3
The slope of the line is -1/3.
Answer:
equivalent to 
Step-by-step explanation:
Given ratio, 
It can be written as 
cancel common factor,
