The new parking lot must hold twice as many cars as the previous parking lot. The previous parking lot could hold 56 cars. So this means the new parking lot must hold 2 x 56 = 112 cars
Let y represent the number of cars in each row, and x be the number of total rows in the parking lot. Since the number of cars in each row must be 6 less than the number of rows, we can write the equation as:
y = x - 6 (1)
The product of cars in each row and the number of rows will give the total number of cars. So we can write the equation as:
xy = 112 (2)
Using the above two equations, the civil engineer can find the number of rows he should include in the new parking lot.
Using the value of y from equation 1 to 2, we get:
x(x - 6) = 112 (3)
This equation is only in terms of x, i.e. the number of rows and can be directly solved to find the number of rows that must in new parking lot.
Is there a picture because I dont see it
Answer:
8 and 12
Step-by-step explanation:
Sides on one side of the angle bisector are proportional to those on the other side. In the attached figure, that means
AC/AB = CD/BD = 2/3
The perimeter is the sum of the side lengths, so is ...
25 = AB + BC + AC
25 = AB + 5 + (2/3)AB . . . . . . substituting AC = 2/3·AB. BC = 2+3 = 5.
20 = 5/3·AB
12 = AB
AC = 2/3·12 = 8
_____
<em>Alternate solution</em>
The sum of ratio units is 2+3 = 5, so each one must stand for 25/5 = 5 units of length.
That is, the total of lengths on one side of the angle bisector (AC+CD) is 2·5 = 10 units, and the total of lengths on the other side (AB+BD) is 3·5 = 15 units. Since 2 of the 10 units are in the segment being divided (CD), the other 8 must be in that side of the triangle (AC).
Likewise, 3 of the 15 units are in the segment being divided (BD), so the other 12 units are in that side of the triangle (AB).
The remaining sides of the triangle are AB=12 and AC=8.
Answer:
6,240 cm
Step-by-step explanation:
8 cm x 5 cm x 13 cm x 12 cm = 6,240 cm