1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dezoksy [38]
2 years ago
7

Does anybody know what they’ll ask on module 5 algebra one dba for flvs I need is ASAP

Mathematics
2 answers:
Allisa [31]2 years ago
5 0

Answer:

jPOINTS

Step-by-step explanation:

patriot [66]2 years ago
3 0

Answer:jpoints

Step-by-step explanation:

You might be interested in
Find the rate of change: (18, 4.5) (20, 5) (22, 5.5) (24, 6)
Korvikt [17]

Answer:

The rate of change for the

X is +2

The rate of change for the

Y is + 0.5

Step-by-step explanation:

No need

4 0
2 years ago
Read 2 more answers
How do I answer this question?​
Novay_Z [31]

Due to the Triangle Angle Sum Theorem, we know that the sum of the interior angles of a triangle equals 180 degrees, therefore,

180 = m<1 + m<2 + m<3

180 - m<3 = m<1 + m<2

But, we also know that m<4 + m<3 = 180 degrees.

180 = m<3 + m<4

180 - m<3 = m<4

Both m<4 and m<1 + m<2  equals 180 - m<3

m<4 = m<1 + m<2

5 0
2 years ago
Use the​ power-reducing formulas to rewrite the expression as an equivalent expression that does not contain powers of trigonome
ratelena [41]

Answer:

x = 0.175\cdot (1-\cos 4\cdot \theta)

Step-by-step explanation:

Let use the following trigonometric identities:

\sin^{2}\theta = \frac{1-\cos 2\cdot \theta}{2} \\\cos^{2}\theta = \frac{1+\cos 2\cdot \theta}{2}

Then, the equation is simplified by substituting its components:

x = 1.40\cdot \left(\frac{1-\cos 2\cdot \theta}{2}  \right)\cdot \left(\frac{1+\cos 2\cdot \theta}{2} \right)

x = 0.35\cdot (1-\cos^{2}2\cdot \theta)

x = 0.35\cdot \sin^{2}2\cdot \theta

x = 0.35\cdot \left(\frac{1-\cos 4\cdot \theta}{2}  \right)

x = 0.175\cdot (1-\cos 4\cdot \theta)

7 0
3 years ago
Read 2 more answers
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
⦁ Evaluate ⦁ 6! ⦁ 8P5 ⦁ 12C4
lisabon 2012 [21]
6! = 6 * 5 *4*3*2*1 =720

8p5 = 8*7*6*5*4 = 6720

12C4 = (12p4)/4! = (12*11*10*9)/4*3*2*1 = 495
7 0
3 years ago
Read 2 more answers
Other questions:
  • The graph represents the function f(x) = x2 + 3x + 2.
    6·1 answer
  • What's an equation in slope intercept that passes through (-7,-4) and is perpendicular to y=1/2x+9
    11·2 answers
  • The ratio of the volumes of two similar solid polyhedra is equal to the square of the ratio between their edges. True or False?
    7·2 answers
  • In the coordinate plane, draw quadrilateral ABCD with A(–5, 0), B(2, –6), C(8, 1), and D(1, 7), then demonstrate that ABCD is a
    15·1 answer
  • 0.0000672 in standard form?​
    9·1 answer
  • PLEASE HELP ME WITH THIS QUESTION
    14·1 answer
  • Find the slope of the line that contains the points (1, 6) and (10, -9)
    6·1 answer
  • Researchers studying the relationship between honesty, age, and self-control conducted an experiment on 160 children between the
    5·1 answer
  • Help me with math please
    8·1 answer
  • PLS HELP IM SUPER STUCK AAA
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!