Based on the data set shown, which of the following is a true statement? -1, -1, 0, 1, 1, 1, 1, 2, 2, 2, 3
Kaylis [27]
The mode of this data set shown would be 1 since it occurs the most often. The answer is that the mode of this set would be (1) since it shows up the most.
Answer:
Step-by-step explanation:
It is conjectured that the Mandelbrot set is locally connected. This famous conjecture is known as MLC (for Mandelbrot locally connected). By the work of Adrien Douady and John H. Hubbard, this conjecture would result in a simple abstract "pinched disk" model of the Mandelbrot set. In particular, it would imply the important hyperbolicity conjecture mentioned above.
The work of Jean-Christophe Yoccoz established local connectivity of the Mandelbrot set at all finitely renormalizable parameters; that is, roughly speaking those contained only in finitely many small Mandelbrot copies.[19] Since then, local connectivity has been proved at many other points of {\displaystyle M}M, but the full conjecture is still open.
You got to shade five squares
The formula for illuminance is given by
E = I / d^2
This formula only holds true for one-dimensional illuminance
The problem asks for the illuminance across the floor. We need to use two variables, x and y.
From Pythagorean Theorem
d^2 = x^2 + y^2
and from Trigonometry
x = d cos t
y = d sin t
The function for the illuminance can be represented by the composite function
E = I cos² t / x²
and
E = I sin² t / y²
The boundary of these functions is:
<span>0 < t < 8
So, the value of t must be in radians and not in degrees</span>
Answer:
A
Step-by-step explanation:
The Y-intercept is -3.
The gradient is -3/4 since it goes down 3 every 4 tiles.