The answer is A. because as you can see it pulls the force
Answer:
a) K = 5.3175
b) ΔG = 3.2694
Explanation:
a) ΔG° = - RT Ln K
∴ T = 25°C ≅ 298 K
∴ R = 8.314 E-3 KJ/K.mol
∴ ΔG° = - 4.140 KJ/mol
⇒ Ln K = - ( ΔG° ) / RT
⇒ Ln K = - ( -4.140 KJ/mol ) / (( 8.314 E-3 KJ/K.mol )( 298 K ))
⇒ Ln K = 1.671
⇒ K = 5.3175
b) A → B
∴ T = 37°C = 310 K
∴ [A] = 1.6 M
∴ [B] = 0.45 M
∴ K = [B] / [A]
⇒ K = (0.45 M)/(1.6 M)
⇒ K = 0.28125
⇒ Ln K = - 1.2685
∴ ΔG = - RT Ln K
⇒ ΔG = - ( 8.314 E-3 KJ/K.mol )( 310 K )( - 1.2685 )
⇒ ΔG = 3.2694
Answer:
the color of the litmus paper will turn into blue color because sodium carbonate is basic in nature
Answer:
B) 244.5
Explanation:
2.62 torr =349.3046 pascals.
349.3046*0.7 sq meter = 244.5 N
<span>The student should
follow following steps to make 1 L of </span>2.0 M CaCl₂.<span>
<span>
1. First he should
calculate the number of moles of 2.0 M CaCl</span></span>₂ in 1 L solution.<span>
</span>Molarity of the solution = 2.0 M<span>
Volume of solution which should be prepared = 1 L
Molarity =
number of moles / volume of the solution
Hence, number of moles in 1 L = 2 mol
2. Find
out the mass of dry CaCl</span>₂ in 2 moles.<span>
moles =
mass / molar mass
Moles of CaCl₂ =
2 mol</span><span>
Molar mass of CaCl₂ = </span><span>110.98 g/mol
Hence, mass of CaCl</span>₂ = 2 mol x <span>110.98 g/mol
= 221.96
g
3. Weigh the mass
accurately
4. Then take a cleaned and dry1 L volumetric flask and place a funnel top of it. Then carefully add the salt into the volumetric flask and
finally wash the funnel and watch glass
with de-ionized water. That water also should be added into the volumetric
flask.
5. Then add some
de-ionized water into
the volumetric flask and swirl well until all salt are
dissolved.
<span>6. Then top up to
mark of the volumetric flask carefully.
</span></span>
7. As the final step prepared solution should be labelled.