2) mg donates two protons to O.
Answer:
-1
Explanation:
The relation between Kp and Kc is given below:
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
<u>Δn = (2)-(2+1) = -1 </u>
Thus, Kp is:
Answer:
0.42 M
Explanation:
The reaction that takes place is:
- Cu(CH₃COO)₂ + Na₂CrO₄ → Cu(CrO₄) + 2Na(CH₃COO)
First we <u>calculate the moles of Na₂CrO₄</u>, using the <em>given volume and concentration</em>:
(200 mL = 0.200L)
- 0.70 M * 0.200 L = 0.14 moles Na₂CrO₄
Now we <u>calculate the moles of Cu(CH₃COO)₂</u>, using its <em>molar mass</em>:
- 40.8 g ÷ 181.63 g/mol = 0.224 mol Cu(CH₃COO)₂
Because the molar ratio of Cu(CH₃COO)₂ and Na₂CrO₄ is 1:1, we can directly <u>substract the reacting moles of Na₂CrO₄ from the added moles of Cu(CH₃COO)₂</u>:
- 0.224 mol - 0.14 mol = 0.085 mol
Finally we <u>calculate the resulting molarity</u> of Cu⁺², from the <em>excess </em>cations remaining:
- 0.085 mol / 0.200 L = 0.42 M
Converting mmHg to atm is solved by division.
Example: Convert 745.0 to atm.
Solution- divide the mmHg value by the 760.0 mmHg / atm.
745 mmHg over 760.0 mmHg/atm
atm value is 0.980263
Now, I am a medical student and we have never had to convert a BP (blood pressure) to atm from mmHg, only ever kPA. SO, I am going to take a guess here and say that when you do the work to solve this, you are going to convert the Systolic (upper #) which is the 145. You should get 0.190789 and then convert the Diastolic (lower #) which is 65. You should get 0.08552632.
So your fraction so to speak should read, 0.190789/0.08552632 or 0.190789 over 0.08552632
(Just to note that is way to low of a BP, although it is irrelevant) Best wishes and good luck. "Remember, never just look for the right answer, look for why it is the right answer!"