Answer:
29...
Step-by-step explanation:
1) Fill in
5(7)-6
2) P.E.M.D.A.S
35 - 6
29
Answer:
Part 1
Type II error
Part 2
No ; is not ; true
Step-by-step explanation:
Data provided in the question
Mean = 100
The Random sample is taken = 43 students
Based on the given information, the conclusion is as follows
Part 1
Since it is mentioned that the classes are successful which is same treated as a null rejection and at the same time it also accepts the alternate hypothesis
Based on this, it is a failure to deny or reject the false null that represents type II error
Part 2
And if the classes are not successful so we can make successful by making type I error and at the same time type II error is not possible
Therefore no type II error is not possible and when the null hypothesis is true the classes are not successful
Answer:
C
Step-by-step explanation:
Hope dis helps
Answer:
(9159 / 7 = 1308.429)
Step-by-step explanation:
Simply multiply the last digit by 2 and then subtract the product from the remaining digits.
If that difference is divisible by 7, then 9159 is divisible by 7.
The last digit in 9159 is 9 and the remaining digits are 915. Thus, the math to determine if 9159 is divisible by 7 using our alternate method is:
915 - (9 x 2) = 897
Since 897 is not divisible by 7, 9159 is also not divisible by 7.
Therefore, the answer to "Is 9159 Divisible By 7?" is no.
(9159 / 7 = 1308.429)
Part A:
Given a square with sides 6 and x + 4. Also, given a rectangle with sides 2 and 3x + 4
The perimeter of the square is given by 4(x + 4) = 4x + 16
The area of the rectangle is given by 2(2) + 2(3x + 4) = 4 + 6x + 8 = 6x + 12
For the perimeters to be the same
4x + 16 = 6x + 12
4x - 6x = 12 - 16
-2x = -4
x = -4 / -2 = 2
The value of x that makes the <span>perimeters of the quadrilaterals the same is 2.
Part B:
The area of the square is given by

The area of the rectangle is given by 2(3x + 4) = 6x + 8
For the areas to be the same

Thus, there is no real value of x for which the area of the quadrilaterals will be the same.
</span>