Answer:
0_10 =0_2
Step-by-step explanation:
Convert the following to base 2:
0_10
Hint: | Starting with zero, raise 2 to increasingly larger integer powers until the result exceeds 0.
Determine the powers of 2 that will be used as the places of the digits in the base-2 representation of 0:
Power | \!\(\*SuperscriptBox[\(Base\), \(Power\)]\) | Place value
0 | 2^0 | 1
Hint: | The powers of 2 (in ascending order) are associated with the places from right to left.
Label each place of the base-2 representation of 0 with the appropriate power of 2:
Place | | | 2^0 |
| | | ↓ |
0_10 | = | ( | __ | )_(_2)
Hint: | Divide 0 by 2 and find the remainder. The remainder is the first digit.
Determine the value of 0 in base 2:
0/2=0 with remainder 0
Place | | | 2^0 |
| | | ↓ |
0_10 | = | ( | 0 | )_(_2)
Hint: | Express 0_10 in base 2.
The number 0_10 is equivalent to 0_2 in base 2.
Answer: 0_10 =0_2
Answer:
The answer is below
Step-by-step explanation:
The linear model represents the height, f(x), of a water balloon thrown off the roof of a building over time, x, measured in seconds: A linear model with ordered pairs at 0, 60 and 2, 75 and 4, 75 and 6, 40 and 8, 20 and 10, 0 and 12, 0 and 14, 0. The x axis is labeled Time in seconds, and the y axis is labeled Height in feet. Part A: During what interval(s) of the domain is the water balloon's height increasing? (2 points) Part B: During what interval(s) of the domain is the water balloon's height staying the same? (2 points) Part C: During what interval(s) of the domain is the water balloon's height decreasing the fastest? Use complete sentences to support your answer. (3 points) Part D: Use the constraints of the real-world situation to predict the height of the water balloon at 16 seconds.
Answer:
Part A:
Between 0 and 2 seconds, the height of the balloon increases from 60 feet to 75 feet at a rate of 7.5 ft/s
Part B:
Between 2 and 4 seconds, the height stays constant at 75 feet.
Part C:
Between 4 and 6 seconds, the height of the balloon decreases from 75 feet to 40 feet at a rate of -17.5 ft/s
Between 6 and 8 seconds, the height of the balloon decreases from 40 feet to 20 feet at a rate of -10 ft/s
Between 8 and 10 seconds, the height of the balloon decreases from 20 feet to 0 feet at a rate of -10 ft/s
Hence it fastest decreasing rate is -17.5 ft/s which is between 4 to 6 seconds.
Part D:
From 10 seconds, the balloon is at the ground (0 feet), it continues to remain at 0 feet even at 16 seconds.
1y - 1/x = 1/60 = x*y =60 = x=60/y
3y - 2(60/y) = 6
3y^2-120=6y
3(y^2-40-2y) =0
y^2-40-2y=0
y = 7.4
3(7.4)-2x=6
22.2-2x = 6
2x = -16.2
x = -8.1