When we are given 3 sides, we try to solve the angles first by using the
law of cosines
cos (A) = [b^2 + c^2 - a^2] / (2 * b * c)
cos (A) = [43^2 + 17^2 -27^2] / (2 * 43 * 17)
cos (A) = [1,849 + 289 -729] /
<span>
<span>
<span>
1,462
</span></span></span>cos (A) = 1,409 / 1,462
cos (A) =
<span>
<span>
<span>
0.96374829001368
Angle A = 15.475
Now that we have one angle, we next can use the
Law of Sines
sin(B) / side b = sin(A) / side a
sin(B) = sin(A) * sideb / sidea
</span></span></span><span>sin(B) = sin(15.475) * 43 / 27
</span><span>sin(B) = 0.26682 * 43 / 27
sin (B) = </span><span>0.424935555555</span>
Angle B = 25.147 Degrees
Remember the arc sine (<span>0.424935555555) also equals </span>
<span>
<span>
<span>
154.85
</span></span></span>Finally, calculating the third angle is quite easy
Angle C = 180 - Angle (A) - Angle(B)
Angle C = 180 - 15.475 - 154.85
Angle C = 9.675
Source:
http://www.1728.org/trigtut2.htm
My guess is that you're doing the Law of Cosines? You have everything you need for that except the angle theta, which is the thing you need to find. It's set up like this: (8)^2 = (10)^2 + (5)^2 -[2(10)(5)cos A] I used A instead of theta. Doing that math, you have: 64 = 100 + 25 -[ 100 cos A]; 64 = 125 - 100 cos A;
-61 = - 100 cos A; -61 / -100 = cos A; .61 = cos A. Now use your inverse function on your calculator to find cos^-1(.61) and that equals 52.4
Answer:
y = -5x - 21
Step-by-step explanation:
Given in the question,
equation of a parallel line
y = -5x + 6
point through which it passes
(-4,-1)
Step1
Find the gradient of the equation given, as it is parallel so it will have same gradient
equation of straight line
y = mx + c
where m is gradient
c is y intercept
y = -5x + 6
m =-5
Step2
Find y-intercept
-1 = -5(-4) + c
-1 = 20 + c
c = -20 - 1
c = -21
Step3
form the equation
y = -5x - 21