<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
You put them in fractions then cross multiple.
18/12 and 3/x so that's 36 equals 18x then you divide 36 by 18 which is 2.
<span>Let A be the center of a circle and two angles at the adjacent center AOB and BOC. Knowing the measure of the angle AOB = 120 and the measure BOC = 150, find the measures of the angles of the ABC triangle.
</span>solution
Given the above information;
AC=AB, therefore ABC is an isosceles triangle.
therefore, BAO=ABO=(180-120)/2=30
OAC=OCA=(180-90)/2=45
OBC=BCO=(180-150)/2=15
THUS;
BAC=BAO+OAC=45+30=75
ABC=OBA+CBO=15+30=45
ACB=ACO+BCO=15+45=60
0.97 * 3000
= (0.97 * 3)*1000
= 2.91*1000
=2910
Answer: Subtract 3 from each side of the equation(A)
Step-by-step explanation:
3n2−15n=3
1:Subtract 3n2 from both sides.
-15n=3-3n2
2:Divide both sides by -15.
-15n/-15=3-3n2/-15
3:Dividing by −15 undoes the multiplication by −15.
n=3-3n2/-15
4:Divide 3−3n 2 by −15
n=n2-1/5