1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blababa [14]
3 years ago
5

HELLOOOOOOOO

Mathematics
1 answer:
kotykmax [81]3 years ago
4 0

Answer:

6

Step-by-step explanation:

You might be interested in
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Determine whether the two triangles are similar and, if they are similar, state a reason.
aleksley [76]

Answer:

Step-by-step explanation:

By triangle sum theorem,

Sum of interior angles of a triangle is 180°.

Therefore, measure of third angle in the larger triangle = 180° - (35° + 120°) = 25°

Similarly, measure of third angle in the smaller triangle = 180° - (25° + 120°)

= 35°

Since, measure of interior angles of larger triangle is equal to the measure of smaller triangle,

Both the triangles will be similar by AA property of similarity.

5 0
2 years ago
Please help!! Math | 25 points :)
arlik [135]

Values of the composite function:

(g\cdot f)(-1)=6

(g\cdot f)(0)=7

(f\cdot g)(-1)=3

(f\cdot g)(4)=2

Step-by-step explanation:

Given two functions f(x) and g(x), their composite function is given by

(f\cdot g)(x) = f(g(x))

Which means using the output value of g(x) as input for f(x).

Let's start by computing

(g\cdot f)(-1)

First, we compute the value of f(-1), which is (from the graph)

f(-1) = 1

Now we use this value as input into g(x); we notice that at x = 1, the value of g(x) is 6, therefore:

(g\cdot f)(-1)=6

Now we evaluate

(g\cdot f)(0)

First, we compute the value of f(0), which is (from the graph)

f(0) = 0

Now we use this value as input into g(x); at x = 0, the value of g(x) is 7, therefore:

(g\cdot f)(0)=7

Now we evaluate

(f\cdot g)(-1)

First, we compute the value of g(-1), which is (from the graph)

g(-1) = 5

Now we use this value as input into f(x); at x = 5, the value of f(x) is 3, therefore:

(f\cdot g)(-1)=3

Finally we evaluate

(f\cdot g)(4)

First, we compute the value of g(4), which is (from the graph)

g(4) = 4

Now we use this value as input into f(x); at x = 4, the value of f(x) is 2, therefore:

(f\cdot g)(4)=2

Learn more about composite functions:

brainly.com/question/2723982

brainly.com/question/2456302

brainly.com/question/1949601

brainly.com/question/1900154

#LearnwithBrainly

6 0
3 years ago
bird that was perched atop a 15 ½ foot tree dives down six feet to a branch below. How far above the ground is the bird’s new lo
never [62]

Answer:

ok so if the bird is on the top at 15 and a half then goes down six feet substrate 15 and a half from six and you get nine and half from the ground to the bird

Step-by-step explanation:

8 0
2 years ago
A stock lost 7 1/8 points on Monday and then another 1 5/8 points on Tuesday. On Wednesday, it gained 13 points. What was the ne
Fudgin [204]

Answer:

It  was gained 4 1/4 points.

Step-by-step explanation:

- 7 1/8 - 1 5/8 + 13 = - 8 6/8 + 13 = - 8 3/4 + 13 = - 8 - 3/4 + 12 + 4/4 =  4 1/4

3 0
3 years ago
Other questions:
  • Write an equation that is parallel to the equation -3x-1/3y=27
    11·1 answer
  • 6 is greater than w, and 2 is less than w
    9·1 answer
  • A telephone cable runs from A to B to C to D. How much cable is required to run from A to D directly, if
    13·1 answer
  • 80000 times 60 plus 89
    7·1 answer
  • Helppppppppppppppppppppppppppppp
    15·2 answers
  • Need Helpppp :) Appropriate Answers Only
    5·2 answers
  • Solve the following system: y = x + 3
    12·2 answers
  • Find the product of 28 and 4. ONLY type in the number.
    7·1 answer
  • A triangle with side lengths of 3, 4, and 5 forms a right triangle.<br><br> True<br> False
    12·2 answers
  • HELP PLSSSSSSSSSSSSSSSSSSSSSSSSS
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!