Answer:
Stephen's wife got £354 more than his son.
Step-by-step explanation:
Given:
Amount of Lottery = £2950
Now Given:
Stephen & Richard share a lottery amount in the ratio 2 : 3
Let the common factor between them be 'x'.
So we can say that;

Dividing both side by 5 we get;

So we can say that;
Stephen share would be = 
Now Given:
Stephen then shares his part between himself, his wife & their son in the ratio 3 : 5 : 2.
Let the common factor between them be 'y'.
So we can say that;

Dividing both side by 10 we get;

So Stephen's wife share = 
And Stephen's son share = 
Now we need to find how much more her wife got then her son.
To find how much more her wife got than her son we will subtract Stephen's son share from Stephen's wife share.
framing in equation form we get;
Amount more her wife got than her son = 
Hence Stephen's wife got £354 more than his son.
The idea for transitions for an equation like this is

where m = slope
h = how much left or right (note the negative)
k = how much up or down
moving 13 down would mean
k = -13
so

D. would be your answer
Read the problem and answer choices. You want to get from ABCD to EFGH, so you need to figure out how to do that with reflection, translation, and dilation—in that order.
The reflection part is fairly easy. ABC is a bottom-to-top order, and EFG is a top-to-bottom order, so the reflection is one that changes top to bottom. It must be reflection across a horizontal line. The only horizontal line offered in the answer choices is the x-axis. Selection B is indicated right away.
The dimensions of EFGH are 3 times those of ABCD, so the dilation scale factor is 3. This means that prior to dilation, the point H (for example), now at (-12, -3) would have been at (-4, -1), a factor of 3 closer to the origin. H corresponds to D in the original figure, which would be located at (0, -2) after reflection across the x-axis.
So, the translation from (0, -2) to (-4, -1) is 4 units left (0 to -4) and 1 unit up (-2 to -1).
The appropriate choice and fill-in would be ...
... <em>B. Reflection across the x-axis, translation </em><em>4</em><em> units left and </em><em>1</em><em> unit up, dilation with center (0, 0) and scale factor </em><em>3</em><em>.</em>
_____
You can check to see that these transformations also map the other points appropriately. They do.