Answer:
should be 3^X = 7 and X = log7/log3
Step-by-step explanation:
Answer:
-8(8-7a)
Step-by-step explanation:
56a-64=-8(8-7a)
9514 1404 393
Answer:
g(x) = 7x -1
Step-by-step explanation:
The y-coordinate of a function tells how many units the function value lies above the x-axis. Translating that value down 4 units is the same as subtracting 4 from the function value.
g(x) = f(x) -4
g(x) = 7x +3 -4
g(x) = 7x -1
Answer:

Step-by-step explanation:
We're given,

~





~
Given:
ABC is an isosceles triangle in which AC =BC.
D and E are points on BC and AC such that CE=CD.
To prove:
Triangle ACD and BCE are congruent.
Solution:
In triangle ACD and BCE,
(Given)

(Common angle)
(Given)

In triangles ACD and BCE two corresponding sides and one included angle are congruent. So, the triangles are congruent by SAS congruence postulate.
(SAS congruence postulate)
Hence proved.