Answer:
<h2>0.059 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>0.059 moles</h3>
Hope this helps you
Answer:
no work was needed. Blinking does not require using energy sometimes we blink without thinking.
Explanation:
<span>Kind of substance besides water:
The best example of hydrogen bonding excluding water is DNA. The two strands of polymers are connected by hydrogen bonds between the nucleotide bases</span>.
Answer:
76.56g
Explanation:
Firstly, to do this we need a correct and balanced equation for the decomposition of potassium chlorate.
2KClO3 —-> 2KCl + 3O2
From the balanced equation, we can see that 2 moles of potassium chlorate yielded 3 moles of oxygen gas
We need to know the actual number of moles of oxygen gas produced. To do this, we divide the mass of the oxygen gas by its molar mass. Its molar mass is 32g/mol
The number of moles is thus 30/32 = 0.9375 moles
Now we can calculate the number of moles of potassium chlorate decomposed.
We simply do this by (0.9375 * 2)/3 = 0.625 moles
Now to get the number of grammes of potassium chlorate decomposed, we simply multiply this number of moles by the molecular mass. The molecular mass of KClO3 is 39 + 35.5 + 3(16) = 122.5g/mol
The amount in grammes is thus 122.5 * 0.625 = 76.56g
Answer:
Water Capacity
Explanation:
Water's high heat capacity is a property caused by hydrogen bonding among water molecules. When heat is absorbed, hydrogen bonds are broken and water molecules can move freely. When the temperature of water decreases, the hydrogen bonds are formed and release a considerable amount of energy.
Hope this helps !