Basically since potassium chloride is an ionic compound as it consists of a metal and a nonmetal, the potassium atom will donate one of its valence electrons to chlorine that will accept it and as a result produce oppositely charged ions, where the K + ion and the Cl - ion will attract forming an ionic bond. The compound that results is potassium chloride.
Answer:
The answer is "
"
Explanation:
We arrange oxoacids to decrease the intensity of acids in this question. Or we may conclude all this from strongest to weakest acids they order oxoacids, that's why above given order is correct.
Answer:
1) Constructive Interference
2) Hits a surface and bounces back
3) Antinodes
Ionic bonds are formed when there is complete transfer of valence electrons between two atoms.
Electronegativity tells the trend of an atom to atract electrons.
You should search for the complete set of rules that indicate whether an ionic or covalent bond happens.
There are two relevant rules to state if whether an ionic bond will happen:
- When the difference of electronegativities between the two atoms is greater than 2.0, then the bond is ionic.
- When the difference is between 1.6 and 2.0, the bond is ionic if one of the elements is a metal.
You need to list the electronegativities of the five elements (there are tables with this information)
Element electronegativity
Cu: 1.9
H: 2.2
Cl 3.16
I: 2.66
S: 2.58
Differences:
Cu / S: 2.58 - 1.9 = 0.68
H / S: 2.58 - 2.2 = 0.38
Cl / S: 3.16 - 2.58 =0.58
I / S: 2.66 - 2.58 = 0.08
Those differences are too low to consider that the bond is ionic.
Then the answer is that none of those atoms forms an ionic bond with sulfur.
If we have 6.68% NaClO, it is the same as saying--> 6.68 grams NaClO= 100 mL of solution. we can use this as a conversion.
800. mL (6.68 mL/ 100 mL)= 53.4 mL
solution = solute + solvent
solute= NaClO
solvent= H2O
solvent= 800-53.4= 747 mL of H2O
so, we you need 53.4 mL of NaClO and 747 mL of water or 53.4 grams of NaClO and 747 mL of water