Alrighty
squaer base so length=width, nice
v=lwh
but in this case, l=w, so replace l with w
V=w²h
and volume is 32000
32000=w²h
the amount of materials is the surface area
note that there is no top
so
SA=LW+2H(L+W)
L=W so
SA=W²+2H(2W)
SA=W²+4HW
alrighty
we gots
SA=W²+4HW and
32000=W²H
we want to minimize the square foottage
get rid of one of the variables
32000=W²H
solve for H
32000/W²=H
subsitute
SA=W²+4WH
SA=W²+4W(32000/W²)
SA=W²+128000/W
take derivitive to find the minimum
dSA/dW=2W-128000/W²
where does it equal 0?
0=2W-1280000/W²
128000/W²=2W
128000=2W³
64000=W³
40=W
so sub back
32000/W²=H
32000/(40)²=H
32000/(1600)=H
20=H
the box is 20cm height and the width and length are 40cm
Hello there.^••^
−7w+8(w+1)=w−7
w+8=w−7
w+8−w=w−7−w8=−7
8−8=−7−80=−15
No solutions.
Answer:
9
Step-by-step explanation:
54+81=9(6+9)
9 times 9 equals 81
Let T be the taco, B the burrito, MP the mexican pizza, R the rice, and N the beans.
For the main course we can have the first three.
----- T
------ B
-------MP
Each main course comes with the two sides. So an R branch and a B branch go to each of the taco, burrito, or pizza.
-----T---------R or N.
We expand it to
--------T-----------R
---------------------N
And we repeat it for the rest.
Thus, the tree diagram is
----- T --------R
-----------------N
-----B---------R
-----------------N
----MP--------R
----------------N