It’s B sorry if I’m wrong:(((
Answer:
The sphere has the greatest volume
Step-by-step explanation:
First note down the formula for volume of sphere and that for volume of a cylinder
<u>Volume of a cylinder</u>

<u>Volume of the sphere</u>

Now from the question, the radius of the cylinder and sphere are equal.In addition, the radius of cylinder is equal to its height.This means that the radius of the sphere, the radius of the cylinder and the height of the cylinder are all equal
Hence,
lets take the radius of cylinder to be= x units
The radius of the sphere will be =x units
The height of the cylinder will be= x units
<u>Calculate the volume of cylinder </u>

<u>Calculate the volume of the sphere</u>

<u>Comparing the volumes</u>
The volume of the sphere is more than the volume of cylinder.If you take the value of x=1 then
Volume of sphere will = 4.189 cubic units
Volume of cylinder will= 3.142 cubic units
Answer:
multiply both sides by 3x + 7
Step-by-step explanation:
this will eliminate the fraction in the equation and therefore make it easier to isolate x
hope this helps :)
Alright, so the difference between tidal heights is 12.6 ft. right? For every integer cos(x) is multiplied, say a*cos(x) the amplitude doubles. So then, (1/2)=(n/12.6) will gives us a value for a that will match the differences in tidal height. a=6.3. Now let's say that 2pi will give us a full cycle from high to low back to high again. If 12:00 noon is our high, it takes 15.2hrs to complete a cycle back to high again. 2pi = 6.28 roughly, and we know that is less than our midpoint in a whole cycle, 7.6 hrs. Also, for every value k>1 in cos(kx), this increases the frequency of waves in a given period. So it seems that we need a value of k less than 1. So we can lower the frequency to match the cycle we are looking for, which is to come back to 17.7 ft by 15.2hrs. So to find our value k we divide 2pi by 15.2. This is 0.41. We do it that way based on the ratio for the standard period to what we need, which is a number that can get us to 15.2. So far we have f(t) = 6.3cos(0.41x). Now the problem we have now is that we are not at our height for max, nor our min, even though our wave matches the difference between them, we are between 6.3 and -6.3 so far. so for every value of c in cos(x)+c, this adds to the height cos starts on the y-axis. Since we are at 6.3 already, all we need to do is subtract 6.3 from 17.6 to get c. So C is 11.3 and our final equation is f(t)=6.3cos(0.41x)+11.3. This gives our tides in 15.2 hr periods, starting at 12 noon = x=0, with extremes at intervals of 7.6 hours. Let me know if you have any more questions about it, it's kind of rough to explain. We transformed by f(t)=a*cos(kx)+c altogether, but I thought it might help to separate each value independently.
Closest to 1/2, because 3.5 is half of 7