9) Original price: $45 ; discount rate : 20% off
Discount = $45 * 20% = $9
Sales price = $45 - $9 = $36
10) Original price : $450 ; discount rate : 30% off
Discount = $450 * 30% = $135
Sales price = $450 - $135 = $315
11) Original price : $48 ; discount rate : 15% off
Discount = $48 * 15% = $7.20
Sales price = $48 - $7.20 = $40.80
12) Original price : $150 ; discount rate : 25% off
Discount = $150 * 25% = $37.50
Sales price = $150 - $37.50 = $112.50
13) Original price : $1,450 ; discount rate : 40% off
Discount = $1,450 * 40% = $580
Sales price = $1,450 - $580 = $870
14) Original price : $82 ; discount rate : 50% off
Discount = $82 * 50% = $41
Sales price = $82 - $41 = $41
5 times because 60÷12 = 5
Your answers are FWR and QET because they are on the same lines. Remember that the prefix co = same. Hope this helps.
Find how many cars she can wash in one day:
95 cars / 5 days = 19 cars per day.
Now multiply by 11 days:
19 cars per day x 11 days = 209 total cars.
Answer:
y=1/2(x-1)
Step-by-step explanation:
If x=t^2 and t>0, then t=sqrt(x).
If t=sqrt(x) or x^(1/2) and y =1-1/t, then y=1-x^(-1/2).
The x-intercept is when y=0.
So we need to solve 0=1-x^(-1/2) to find point P.
Add x^(-1/2) on both sides: x^(-1/2)=1.
Raise both sides to -2 power: x=1
So point P is (1,0).
Let's find tangent line at point (1,0).
We will need the slope so let's differentiate.
y'=0+1/2x^(-3/2)
y'=1/(2x^(3/2))
The slope at x=1 is y'=1/(2[1]^(3/2))=1/(2×1)=1/2.
Recall point-slope form is y-y1=m(x-x1).
So our line we are looking for is y-0=1/2(x-1)
Let's simplify left hand side y=1/2(x-1)