Given expression is
![\sqrt[4]{\frac{16x^{11}y^8}{81x^7y^6}}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B11%7Dy%5E8%7D%7B81x%5E7y%5E6%7D%7D)
Radical is fourth root
first we simplify the terms inside the radical


So the expression becomes
![\sqrt[4]{\frac{16x^4y^2}{81}}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E4y%5E2%7D%7B81%7D%7D)
Now we take fourth root
![\sqrt[4]{16} = 2](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16%7D%20%3D%202)
![\sqrt[4]{81} = 3](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B81%7D%20%3D%203)
![\sqrt[4]{x^4} = x](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E4%7D%20%3D%20x)
We cannot simplify fourth root (y^2)
After simplification , expression becomes
![\frac{2x\sqrt[4]{y^2}}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5Csqrt%5B4%5D%7By%5E2%7D%7D%7B3%7D)
Answer is option B
Answer:
1012.5
Step-by-step explanation:
Circumference of Circle=C, =2(pi)(radius)
Radius of Circle=r
Side of square=x
f(x)=area of circle
g(r)=area of square
16 feet=C+4x
C=16-4x
2(pi)(r)=16-4x
2(pi)(r)=2(8-2x)
(pi)(r)=8-2x
r=(8-2x)/(pi)
x=(8-(pi)r)/2
f(x)=(pi)(r^2)
f(x)=(pi)((8-2x)/(pi))^2
f(x)=((8-2x)^2)/(pi)
f(x)=((64-32x+4x^2))/(pi)
g(r)=((8-(pi)r)/2)^2
g(r)=((64-16(pi)r+(pi)^2(r^2))/4
Answer:
A
Step-by-step explanation: