1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anit [1.1K]
3 years ago
8

Examine the right triangle. A right triangle with side lengths 17 centimeters and 48 centimeters. The hypotenuse is unknown. Wha

t is the length of the hypotenuse in the right triangle? StartRoot 2,593 EndRoot 60 cm StartRoot 4,225 EndRoot 65 cm
Mathematics
2 answers:
Goshia [24]3 years ago
8 0

Answer:c

Step-by-step explanation:

Dimas [21]3 years ago
5 0

Answer:

The answer to your question is  c = \sqrt{2593}

Step-by-step explanation:

Data

right triangle

short leg = 17 cm

long leg = 48 cm

hypotenuse = ?

Process

-Use the Pythagorean theorem to find the answer

              c² = a² + b²

c = hypotenuse

a = short leg = 17 cm

b = long leg = 48 cm

- Substitution

             c² = 17² + 48²

-Simplification

             c² = 289 + 2304

             c² = 2593

-Result

             c = \sqrt{2593}

You might be interested in
Trevor solved the system of equations below. What mistake did he make in his work? 2x + y = 5 x − 2y = 10 y = 5 − 2x x − 2(5 − 2
Arturiano [62]
2x+y=5 \\
x-2y=10 \\ \\
y=5-2x \\
x-2(5-2x)=10 \\
x-10+4x=10 \\
5x-10=10 \\
\boxed{5x=0} \Leftarrow \hbox{the mistake, it should be 5x=20} \\
x=0 \\ \\
2(0)+y=5 \\
y=5

If 2x+y=5, then y=5-2x, so he substituted 5-2x correctly.
x+4x=5x, so he combined like terms correctly.
If 5x-10=10, then 5x=10+10 -> 5x=20, so he subtracted 10 from the right side instead of adding 10 to the right side.

The answer is C.

Here's the correct solution:
2x+y=5 \\
x-2y=10 \\ \\
y=5-2x \\
x-2(5-2x)=10 \\
x-10+4x=10 \\
5x-10=10 \\
5x=10+10 \\
5x=20 \\
x=\frac{20}{5} \\
x=4 \\ \\
y=5-2x \\
y=5 - 2 \times 4 \\
y=5-8 \\
y=-3 \\ \\
(x,y)=(4,-3)
5 0
3 years ago
Find the following:
Butoxors [25]

Answer:

Step-by-step explanation:

Limit refers to the value that the function approaches as the input approaches some value.

We say \displaystyle \lim_{x\rightarrow a}f(x)=L, if f(x) approaches L as x approaches 'a'.

(a)

\displaystyle \lim_{x\rightarrow 5}\left ( \frac{f(x)-8}{x-5} \right )=4\\\frac{\displaystyle \lim_{x\rightarrow 5}f(x)-\displaystyle \lim_{x\rightarrow 5}8}{\displaystyle \lim_{x\rightarrow 5}x-\displaystyle \lim_{x\rightarrow 5}5}=4\\

\frac{\displaystyle \lim_{x\rightarrow 5}f(x)-8}{\displaystyle \lim_{x\rightarrow 5}x-5}=4\\\displaystyle \lim_{x\rightarrow 5}f(x)-8=4\left ( \displaystyle \lim_{x\rightarrow 5}x-5 \right )\\\displaystyle \lim_{x\rightarrow 5}f(x)-8=4\displaystyle \lim_{x\rightarrow 5}x-4(5)\\\displaystyle \lim_{x\rightarrow 5}f(x)-8=4(5)-4(5)\\

\displaystyle \lim_{x\rightarrow 5}f(x)-8=20-20=0\\\displaystyle \lim_{x\rightarrow 5}f(x)=8

(b)

\displaystyle \lim_{x\rightarrow 5}\left ( \frac{f(x)-8}{x-5} \right )=7\\\frac{\displaystyle \lim_{x\rightarrow 5}f(x)-\displaystyle \lim_{x\rightarrow 5}8}{\displaystyle \lim_{x\rightarrow 5}x-\displaystyle \lim_{x\rightarrow 5}5}=7\\\frac{\displaystyle \lim_{x\rightarrow 5}f(x)-8}{\displaystyle \lim_{x\rightarrow 5}x-5}=7\\

\displaystyle \lim_{x\rightarrow 5}f(x)-8=7\left ( \displaystyle \lim_{x\rightarrow 5}x-5 \right )\\\displaystyle \lim_{x\rightarrow 5}f(x)-8=7\displaystyle \lim_{x\rightarrow 5}x-7(5)\\\displaystyle \lim_{x\rightarrow 5}f(x)-8=7(5)-7(5)\\\displaystyle \lim_{x\rightarrow 5}f(x)-8=35-35=0\\\displaystyle \lim_{x\rightarrow 5}f(x)=8

3 0
3 years ago
This extreme value problem has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the ex
velikii [3]

Answer:

The maximum value= 36

Minimum value = - 36

Step-by-step explanation:

Given that

f(x, y, z) = 8 x + 8 y + 4 z

h(x,y,z)=4 x² + 4 y² + 4 z² - 36

From Lagrange multipliers

Δf = λ Δh

Δf = < 8 ,8 , 4>

Δh = < 8 x ,8 y  , 8 z>

Δf = λ Δh

So

< 8 ,8 , 4> = < 8  λ x ,8 λ y  , 8 λ z>

8 = 8  λ x                     -------------1

8 = 8 λ y                      ----  ------2

4 = 8 λ z                    ----------------3

From equation 1 ,2 and 3

Now by putting the value of x,y and z in the following equation

4 x² + 4 y² + 4 z² = 36

4\times \dfrac{1}{\lambda^2 }+4\times \dfrac{1}{\lambda^2 }+4\times \dfrac{1}{(2\lambda)^2 }=36

\dfrac{4}{\lambda^2 }+ \dfrac{4}{\lambda^2 }+ \dfrac{1}{\lambda^2 }=36

So the value of λ is

\lambda =\pm \dfrac{1}{2}

When λ = 1/2

x = 1 / λ   , y=1 / λ   ,  z= 1 /2 λ

x= 2 , y = 2 , z=1

So

f(x, y, z) = 8 x + 8 y + 4 z

f(2, 2, 1) = 8 x 2 + 8 x 2 + 4 x 1

f(2, 2, 1) =36

When λ = - 1/2

x = 1 / λ   , y=1 / λ   ,  z= 1 /2 λ

x= - 2 , y = - 2 , z= - 1

So

f(x, y, z) = 8 x + 8 y + 4 z

f(-2, -2, -1) = 8 x (-2) + 8 x (-2) + 4 x (-1)

f(-2, -2, -1) = - 36

The maximum value= 36

Minimum value = - 36

7 0
3 years ago
Read 2 more answers
A baseball team has 4 ​pitchers, who only​ pitch, and 16 other​ players, all of whom can play any position other than pitcher. F
ivolga24 [154]

Answer:

2,075,673,600 batting orders may occur.

Step-by-step explanation:

The order of the first eight batters in the batting order is important. For example, if we exchange Jonathan Schoop with Adam Jones in the lineup, that is a different lineup. So we use the permutations formula to solve this problem.

Permutations formula:

The number of possible permutations of x elements from a set of n elements is given by the following formula:

P_{(n,x)} = \frac{n!}{(n-x)!}

First 8 batters

8 players from a set of 16. So

P_{(16,8)} = \frac{16!}{(16 - 8)!} = 518918400

Last batter:

Any of the four pitchers.

How many different batting orders may​ occur?

4*518918400 = 2,075,673,600

2,075,673,600 batting orders may occur.

5 0
3 years ago
Sara and Paul are on opposite sides of a building that a telephone pole fell on. The pole is leaning away from Paul at
r-ruslan [8.4K]

Answer:

a) See figure attached

b) x = \frac{sin(124)}{sin(34)} 80.086 = 118.732 ft

c) h = 35 sin (59) = 30.0 ft

So then the heigth for the building is approximately 30 ft

Step-by-step explanation:

Part a

We can see the figure attached is a illustration for the problem on this case.

Part b

For this case we can use the sin law to find the value of r first like this:

\frac{sin(22)}{35 ft} =\frac{sin(59)}{r}

r= \frac{sin(59)}{sin(22)} 35 ft = 80.086ft

Then we can use the same law in order to find the valueof x liek this:

\frac{sin(124)}{x ft} =\frac{sin(34)}{80.086}

x = \frac{sin(124)}{sin(34)} 80.086 = 118.732 ft

And that represent the distance between Sara and Paul.

Part c

For this cas we are interested on the height h on the figure attached. We can use the sine indentity in order to find it.

sin (59) = \frac{h}{35}

And if we solve for h we got:

h = 35 sin (59) = 30.0 ft

So then the heigth for the building is approximately 30 ft

5 0
2 years ago
Other questions:
  • You have two jobs. One job pays $7 per hour and the other pays $8.25 per hour. You worked 22 hours total last week and earned $1
    11·1 answer
  • 9+3v is greater than or equal to 6
    6·1 answer
  • How can I divide 33 photos into two <br><br>groups
    10·1 answer
  • Last Saturday 1,625 people visited the state fair. 52% of the visitors were adults, 12% were teenagers, and 36% were children ag
    14·1 answer
  • An elementary school is offering 3 language classes: one in Spanish, one inFrench, and one in German. The classes are open to an
    5·1 answer
  • What are the terms in the expression 7x+4y+1?
    6·1 answer
  • If a=3 and b=7 find the value of<br>2ab​
    5·1 answer
  • Answer for this to question c
    8·1 answer
  • The product of two rational numbers is 6.If one of them is 8,find the other number.
    10·1 answer
  • A quantity y varies inversely with the square of x. If y=8 when x=3, find y when x is 4
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!