Answer:
They will meet in 5:30.
Step-by-step explanation:
'Cause you have to fin the LCM (least common multiple). And in this case the LCM is 30.
It's 82 degrees. Subtract your minor arc (98) by 360 to get your major arc, which is 262. Then, subtract 98 (minor arc) from 262 (major arc), which gives you 164. Finally, divide 164 by 2 to get angle ABC.
Answer:
(A) Set A is linearly independent and spans
. Set is a basis for
.
Step-by-Step Explanation
<u>Definition (Linear Independence)</u>
A set of vectors is said to be linearly independent if at least one of the vectors can be written as a linear combination of the others. The identity matrix is linearly independent.
<u>Definition (Span of a Set of Vectors)</u>
The Span of a set of vectors is the set of all linear combinations of the vectors.
<u>Definition (A Basis of a Subspace).</u>
A subset B of a vector space V is called a basis if: (1)B is linearly independent, and; (2) B is a spanning set of V.
Given the set of vectors
, we are to decide which of the given statements is true:
In Matrix
, the circled numbers are the pivots. There are 3 pivots in this case. By the theorem that The Row Rank=Column Rank of a Matrix, the column rank of A is 3. Thus there are 3 linearly independent columns of A and one linearly dependent column.
has a dimension of 3, thus any 3 linearly independent vectors will span it. We conclude thus that the columns of A spans
.
Therefore Set A is linearly independent and spans
. Thus it is basis for
.
Answer:
One way to find the least common multiple of two numbers is to first list the prime factors of each number. Then multiply each factor the greatest number of times it occurs in either number. If the same factor occurs more than once in both numbers, you multiply the factor the greatest number of times it occurs.
Step-by-step explanation:
Answer:
84
Step-by-step explanation:
k(x+6)= 4x²+20
k(10)= k(4+6)= 4*4²+20= 64+20= 84