Solve the system ⎧⎩⎨⎪⎪⎪⎪⎪⎪4x1−x13x1−3x1−5x2+x2−4x2+3x2+4x3+2x3+6x3+6x3+4x4=+3x4=+7x4=+9x4=3143
1 answer:
It appears you have the system with augmented matrxi ...
![\left[\begin{array}{cccc|c}4&-5&4&4&3\\-1&1&2&3&1\\3&-4&6&7&4\\-3&3&6&9&3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D4%26-5%264%264%263%5C%5C-1%261%262%263%261%5C%5C3%26-4%266%267%264%5C%5C-3%263%266%269%263%5Cend%7Barray%7D%5Cright%5D)
Right away, you notice that the 4th row is 3 times the 2nd row, so the equations are dependent and will not have a unique solution.
My calculator tells me the reduced equations can be written
... x1 -14x3 -19x4 = -8
... x2 -12x3 -16x4 = -7
This says there are two dependent equations in the set, not just one.
You might be interested in
Step-by-step explanation:
3(x+3)=12
3x+9=12
3x=12-9
3x=3
x=1
Answer:
None of the above
Step-by-step explanation:
<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>B</em><em>.</em><em>.</em>
Do parentheses first:
6 +4-2 = 8
Now do brackets:
128/8 = 16
Now multiply:
16 x 8 = 128
The answer is 128