-5.6(repeating 6), -√(21), 3&9/10, 5.2
The speed of the current in a river is 6 miles per hour
<em><u>Solution:</u></em>
Given that,
Speed of boat in still water = 20 miles per hour
Time taken = 3 hours
Distance downstream = 78 miles
To find: Speed of current
<em><u>If the speed of a boat in still water is u km/hr and the speed of the stream is v km/hr, then: </u></em>
Speed downstream = (u + v) km/hr
Speed upstream = (u - v) km/hr
<em><u>Therefore, speed downstream is given as:</u></em>

We know that,
Speed downstream = (u + v)
26 = 20 + v
v = 26 - 20
v = 6 miles per hour
Thus speed of the current in a river is 6 miles per hour
.8 (88%)+.2x=90%
70.4%+.2x=90%
subtract 70.4% from 90% to get 19.6%
make the .2x into 2 and the 19.6 into 196
divide 196 by 2 to come up with the answer of 98%.
you will need a 98% to have a 90% for the final grade
Answer:
a. The probability that a customer purchase none of these items is 0.49
b. The probability that a customer purchase exactly 1 of these items would be of 0.28
Step-by-step explanation:
a. In order to calculate the probability that a customer purchase none of these items we would have to make the following:
let A represents suit
B represents shirt
C represents tie
P(A) = 0.22
P(B) = 0.30
P(C) = 0.28
P(A∩B) = 0.11
P(C∩B) = 0.10
P(A∩C) = 0.14
P(A∩B∩C) = 0.06
Therefore, the probability that a customer purchase none of these items we would have to calculate the following:
1 - P(A∪B∪C)
P(A∪B∪C) =P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C)
= 0.22+0.28+0.30-0.11-0.10-0.14+0.06
= 0.51
Hence, 1 - P(A∪B∪C) = 1-0.51 = 0.49
The probability that a customer purchase none of these items is 0.49
b.To calculate the probability that a customer purchase exactly 1 of these items we would have to make the following calculation:
= P(A∪B∪C) - ( P(A∩B) +P(C∩B) +P(A∩C) - 2 P(A ∩ B ∩ C))
=0.51 -0.23 = 0.28
The probability that a customer purchase exactly 1 of these items would be of 0.28
We let c represent the number of dozen cupcakes in which the problem says that the cost of each cupcake is $8 per dozen. In this case, the money earned by Eva should be a function of the number of dozen cupcakes. In this case, the expression that represents this is A. f(c) = c × 8