Answer:
32.33 <= m
Step-by-step explanation:
Since we are dealing with below sea level our initial starting point and max level will both be negative values, while our descending rate will also be negative because we are going down. Using the values provided we can create the following inequality...
-400 <= -12m - 12
Now we can solve the inequality to find the max number of minutes that the submarine can descend.
-400 <= -12m - 12 ... add 12 on both sides
-388 <= -12m ... divide both sides by -12
32.33 <= m
For this question, we need the formula τ = F x d<span>, and just plug the numbers in.
</span>
Given the formula <span>τ = F x d</span>
Where τ = torque,
F = force applied, &
d = distance from the axis / hinge,
<span>τ = 300 c 0.8 = 240Nm</span>
Disregard the weight of the door or if there's any friction at the hinge. None of this will change the torque applied.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
<u>Algebra I</u>
- Terms/Coefficients
- Factoring
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
y = (3x - 1)⁵(4 - x⁴)⁵
<u>Step 2: Differentiate</u>
- Product Rule:
^5 + (3x - 1)^5\frac{d}{dx}[(4 - x^4)^5]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%20-%201%29%5E5%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5Cfrac%7Bd%7D%7Bdx%7D%5B%284%20-%20x%5E4%29%5E5%5D)
- Chain Rule [Basic Power Rule]:
![\displaystyle y' =[5(3x - 1)^{5-1} \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^{5-1} \cdot \frac{d}{dx}[(4 - x^4)]]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E%7B5-1%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B3x%20-%201%5D%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E%7B5-1%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%284%20-%20x%5E4%29%5D%5D)
- Simplify:
![\displaystyle y' =[5(3x - 1)^4 \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot \frac{d}{dx}[(4 - x^4)]]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E4%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B3x%20-%201%5D%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E4%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%284%20-%20x%5E4%29%5D%5D)
- Basic Power Rule:
^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^{4-1}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E4%20%5Ccdot%203x%5E%7B1%20-%201%7D%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E4%20%5Ccdot%20-4x%5E%7B4-1%7D%5D)
- Simplify:
^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E4%20%5Ccdot%203%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E4%20%5Ccdot%20-4x%5E3%5D)
- Multiply:

- Factor:
![\displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 3(4 - x^4) - 4x^3(3x - 1) \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%205%283x-1%29%5E4%284%20-%20x%5E4%29%5E4%5Cbigg%5B%203%284%20-%20x%5E4%29%20-%204x%5E3%283x%20-%201%29%20%5Cbigg%5D)
- [Distributive Property] Distribute 3:
![\displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 4x^3(3x - 1) \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%205%283x-1%29%5E4%284%20-%20x%5E4%29%5E4%5Cbigg%5B%2012%20-%203x%5E4%20-%204x%5E3%283x%20-%201%29%20%5Cbigg%5D)
- [Distributive Property] Distribute -4x³:
![\displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 12x^4 + 4x^3 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%205%283x-1%29%5E4%284%20-%20x%5E4%29%5E4%5Cbigg%5B%2012%20-%203x%5E4%20-%2012x%5E4%20%2B%204x%5E3%20%5Cbigg%5D)
- [Brackets] Combine like terms:

- Factor:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Answer:
$0.10
Step-by-step explanation:
$1.20 divided by 12