1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
10

In​ randomized, double-blind clinical trials of a new​ vaccine, were randomly divided into two groups. Subjects in group 1 recei

ved the new vaccine while subjects in group 2 received a control vaccine. After the second​ dose, of subjects in the experimental group​ (group 1) experienced as a side effect. After the second​ dose, of of the subjects in the control group​ (group 2) experienced as a side effect. Does the evidence suggest that a higher proportion of subjects in group 1 experienced as a side effect than subjects in group 2 at the level of​ significance?
Mathematics
1 answer:
Ksivusya [100]3 years ago
5 0

Answer: YES.

the evidence supports this claim.

Step-by-step explanation:

We have that from the complete information,

H0: p1 = p2

Ha : p1 > p2

N1 = 654, P1 = 103/654

N2 = 615, P2 = 52/615

First we have to check the states of typicality that is if n1p1 and n1*(1-p1) and n2*p2 and n2*(1-p2) all are more prominent than equivalent to 5 or not

N1*p1 = 103

N1*(1-p1) = 551

N2*p2 = 52

N2*(1-p2) = 563

All the conditions are met so we can utilize standard typical z table to direct the test

Test measurements z = (P1-P2)/standard mistake

Standard blunder = √{p*(1-p)}*√{(1/n1)+(1/n2)}

P = pooled extent = [(p1*n1)+(p2*n2)]/[n1+n2]

After replacement

Test measurements z = 3.97

From z table, P(Z>3.97) = 0.000036

Thus, P-Value = 0.000036

As the got P-Value is not exactly the given noteworthiness 0.01

We reject the invalid speculation

Thus, we have enough proof to help the claim.that a higher extent of subjects in bunch 1 experienced drowsiness.

cheers I hope this helped !!

You might be interested in
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
3 years ago
50 POINTS .....................
Alenkinab [10]

The option (C) Mus. Apt. = -22.26 + 0.4925(IQ score) is correct because the value of slope is 0.4925 and y-intercept is -22.26.

<h3>What is the line of best fit?</h3>

A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.

\rm m = \dfrac{n\sum xy-\sum x \sum y}{n\sum x^2 - (\sum x)^2}

\rm c = \dfrac{\sum y -m \sum x}{n}

We have data shown in the picture.

Let's suppose the regression line is:

y = mx + c

Where m is the slope of the regression line and c is the y-intercept of the line.

We can calculate the value of m and c by using the formula.

After calculating, we get:

m = 0.4925

c = -22.26

Mus. Apt. = 0.49253(IQ score) - 22.26

or

Mus. Apt. = -22.26 + 0.4925(IQ score)

Thus, the option (C) Mus. Apt. = -22.26 + 0.4925(IQ score) is correct because the value of slope is 0.4925 and y-intercept is -22.26.

Learn more about the line of best fit here:

brainly.com/question/14279419

#SPJ1

4 0
2 years ago
Please Help!! Coordinate Plane!!
Black_prince [1.1K]

Answer:

CEDB i think

Step-by-step explanation:

7 0
3 years ago
True or false.
valkas [14]

Answer:false

Step-by-step explanation:no constant rate of change in y and x values

8 0
3 years ago
In the number 3.072 the digit 7 is in the ? place and the digit 2 is in the ? place.​
notka56 [123]

Answer:

7= Hundredths

2=Thousandths

8 0
3 years ago
Other questions:
  • Please help me with a maths question below
    5·1 answer
  • The 10 random numbers between 1 and 80 are​
    8·1 answer
  • Solve for y,6x+7=-14y
    14·1 answer
  • during a special sale,all the CDs have the same price.Mr.ortiz pays $228.85 for 23 CDs.Which is the best estimate of the priceof
    14·1 answer
  • Graph the relation shown in the table. Is the relation a function? Why or why not?
    8·1 answer
  • Claudia brought a 16-cup jug filled with water to the soccer game. She shared the water with her teammates. How can Claudia find
    9·1 answer
  • Solve for y.<br> -80 + y = 80<br> y=0<br> y=-160<br> y = 160
    15·1 answer
  • &lt; Back to Content
    5·1 answer
  • One leg of a right triangle measures 10 inches while the other leg measures sqrt(21) Inches . What is the length of hypotenuse ?
    6·2 answers
  • (40 POINTS) Which linear function represents this table of values?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!