Answer:
(7, 3)
Step-by-step explanation:
Using the midpoint formula
M(X, Y) = {(ax1+bx2/a+b), ay1+by2/a+b}
X = ax1+bx2/a+b
X = -5(1)+3(11)/1+3
X = -5+33/4
X = 28/4
X = 7
Y = ay1+by2/a+b
Y = 1(12)+3(0)/1+3
Y = 12/4
Y = 3
Hence the coordinate of P is at (7, 3)
It take 23 mins for the drive
He needs to reach the airport by a quarter before 6
a quarter before 6 = 5.45
So he needs to leave 23 mins before 5.45
23 mins before 5.45 = 5.22
☁️ Answer ☁️
n = 3
Hope it helps.
Have a nice day noona/hyung  ̄▽ ̄
Answer:
24.5 unit²
Step-by-step explanation:
Area of ∆
= ½ | x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂) |
= ½ | (-1)(3 -(-4)) + 6(-4 -3) + (-1)(3 - 3) |
= ½ | -7 - 42 |
= ½ | - 49 |
= ½ (49)
= 24.5 unit²
<u>Method 2:</u>
Let the vertices are A, B and C. Using distance formula:
AB = √(-1-6)² + (3-3)² = 7
BC = √(-6-1)² + (-4-3)² = 7√2
AC = √(-1-(-1))² + (4-(-3))² = 7
Semi-perimeter = (7+7+7√2)/2
= (14+7√2)/2
Using herons formula:
Area = √s(s - a)(s - b)(s - c)
here,
s = semi-perimeter = (14 + 7√2)/2
s - a = S - AB = (14+7√2)/2 - 7 = (7 + √2)/2
s - b = (14+7√2)/2 - 7√2 = (14 - 7√2)/2
s - c = (14+7√2)/2 - 7 = (7 + √2)/2
Hence, on solving for area using herons formula, area = 49/2 = 24.5 unit²