Answer:
v = 1.08 m/s
Explanation:
What is the linear speed of the 0.0500-kg sphere as its passes through its lowest point?
The decrease in PE is
d = 80.0cm * 1 / 1000m = 0.80m
h = 0.80 m /2 = 0.40 m
ΔPE = m*g*h
ΔPE = (0.0500 - 0.0200)kg * 9.8m/s² * 0.400 m
ΔPE = 0.1176 J
The moment of inertia of the assembly is
I = 1/12*m*L² + (m1 + m2)*(L/2)²
I = 1/12*0.390kg*(0.800m)² + 0.0700kg*(0.400m)²
I = 0.032 kg·m²
KE = ½Iω²
0.1176 J = ½ * 0.032kg·m² * ω²
ω = 2.71 rad/s
v = ωr = 2.71 rad/s * 0.400m
The linear velocity
v = 1.08 m/s
The Battle of the Bulge in the winter of 1944 was the last Great German offensive of the Second World War.
The Ampere (A). You could literally google to be more efficient, all the same to me tho
Answer:
The resultant velocity of the jet as a vector in component form 426.87 mi/hr 5.36 degrees North.
Explanation:
Vectors are quantities that have their magnitude and direction .
Sketching out the problem given, by using straight lines to represent each of the vectors, we will have a right angled triangle as shown below.
The solution can be obtained by applying Pythagoras theorem to
resolve the vectors.
Velocity of jet plane = 425 mi/hr
velocity of air = 40 mi/hr
Resultant of the vectors =
mi/hr
Vector direction =
hence the velocity is 426.87 mi/hr in a direction 5.36 degrees inclined Northward
Answer:
0.90m/s²
Explanation:
Given parameters:
Initial speed = 6miles/hr
Final speed = 12miles/hr
Time taken = 3 seconds
Unknown:
Acceleration = ?
Solution:
Acceleration is the rate of change of velocity with time. It is mathematically given as:
Acceleration = 
We need to convert miles/hr to meters/seconds
Initial speed = 6 x
x
x 
= 2.68m/s
Final speed = 12 x
= 5.37m/s
Acceleration =
= 0.90m/s²