Sector area = (central angle / 360) * PI * radius^2
sector area = (72 / 360) * PI * radius^2
radius^2 = sector area / [(72 / 360) * PI]
radius^2 = 16.2 * PI / [(1 / 5) * PI]
radius^2 = 16.2 / .2
radius^2 = 81
radius = 9
Source:
http://www.1728.org/radians.htm
Answer:they all equal 69
Step-by-step explanation:
Answer:
the answer is C
Step-by-step explanation:
hope this helps!
Answer:
14
Step-by-step explanation:
You can solve using PEMDAS:
Parentheses
Exponents
Multiplication
Division
Addition
Subtraction
3(2+5)-5(3)+8=?
3(7)-5(3)+8=?
No exponents
3(7)-5(3)+8=?
21-15+8=?
No division
21-15+8=?
21-7=?
21-7=14
3(2+5)-5(3)+8=14
Area of the parabolic region = Integral of [a^2 - x^2 ]dx | from - a to a =
(a^2)x - (x^3)/3 | from - a to a = (a^2)(a) - (a^3)/3 - (a^2)(-a) + (-a^3)/3 =
= 2a^3 - 2(a^3)/3 = [4/3](a^3)
Area of the triangle = [1/2]base*height = [1/2](2a)(a)^2 = <span>a^3
ratio area of the triangle / area of the parabolic region = a^3 / {[4/3](a^3)} =
Limit of </span><span><span>a^3 / {[4/3](a^3)} </span>as a -> 0 = 1 /(4/3) = 4/3
</span>