Answer:
tables to display the required information:
![\left[\begin{array}{ccccccc}$quarter&$beg workers&$hired&$lay-off&$total&$working days&$production\\1st&375&174&0&549&59&971730\\2nd&549&23&0&572&62&1063920\\3rd&572&0&50&522&55&861300\\4th&522&0&196&326&58&567240\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccccc%7D%24quarter%26%24beg%20workers%26%24hired%26%24lay-off%26%24total%26%24working%20days%26%24production%5C%5C1st%26375%26174%260%26549%2659%26971730%5C%5C2nd%26549%2623%260%26572%2662%261063920%5C%5C3rd%26572%260%2650%26522%2655%26861300%5C%5C4th%26522%260%26196%26326%2658%26567240%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccccc}$quarter&$beginning&$production&$demand&$ending\\1st&120000&971730&940000&151730\\2nd&151730&1063920&1215000&650\\3rd&650&861300&860000&1950\\4th&1950&567240&430000&139190\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D%24quarter%26%24beginning%26%24production%26%24demand%26%24ending%5C%5C1st%26120000%26971730%26940000%26151730%5C%5C2nd%26151730%261063920%261215000%26650%5C%5C3rd%26650%26861300%26860000%261950%5C%5C4th%261950%26567240%26430000%26139190%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Total cost:
hiring cost: (174 + 23)*200 = 39,400
lay-off cost: (50 + 196) * 400 = 98,400
inventory cost: ending inventory * $0.25 = 73,380
Total cost: $211,180
Explanation:
We solve this using Excel SOLVER which uses linear programming.
First, build a table for workers and production.
![\left[\begin{array}{ccccccc}\\A&B&C&D&E&F&G\\$quarter&$beg workers&$hired&$lay-off&$total&$working days&$production\\1st&375&&&B + C - D &59&E \times 30 \times F\\2nd&E_1&&&B + C - D&62&E \times 30 \times F\\3rd&E_2&&&B + C - D&62&E \times 30 \times F\\4th&E_3&&&B + C - D&62&E \times 30 \times F\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccccc%7D%5C%5CA%26B%26C%26D%26E%26F%26G%5C%5C%24quarter%26%24beg%20workers%26%24hired%26%24lay-off%26%24total%26%24working%20days%26%24production%5C%5C1st%26375%26%26%26B%20%2B%20C%20-%20D%20%2659%26E%20%5Ctimes%2030%20%5Ctimes%20F%5C%5C2nd%26E_1%26%26%26B%20%2B%20C%20-%20D%2662%26E%20%5Ctimes%2030%20%5Ctimes%20F%5C%5C3rd%26E_2%26%26%26B%20%2B%20C%20-%20D%2662%26E%20%5Ctimes%2030%20%5Ctimes%20F%5C%5C4th%26E_3%26%26%26B%20%2B%20C%20-%20D%2662%26E%20%5Ctimes%2030%20%5Ctimes%20F%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Then we build a table for inventory:
![\left[\begin{array}{ccccc}\\A&B&C&D&E\\quarter&beginning&production&demand&ending\\1st&120000&&&B+C-D\\2nd&E_1&&&B+C-D\\3rd&E_2&&&B+C-D\\4th&E_3&&&B+C-D\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D%5C%5CA%26B%26C%26D%26E%5C%5Cquarter%26beginning%26production%26demand%26ending%5C%5C1st%26120000%26%26%26B%2BC-D%5C%5C2nd%26E_1%26%26%26B%2BC-D%5C%5C3rd%26E_2%26%26%26B%2BC-D%5C%5C4th%26E_3%26%26%26B%2BC-D%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Last the cell for total cost we want to minimize:
=SUM(hired) x 200 + SUM(lay-off) x 400) + SUM(ending inventory) x 0.25
Our requirement is:
1)ending inventory of 100,000 or more
2) total worker of 325 or above
3) fulfill all demand so ending must be zero or higher than zero
4) hiring and lay-off are Natural numbers (we can't hire 0.5 employees)