Answer:
(x+8)^2=0
Step-by-step explanation:
x^2+16x+64=0
8x8=64
8+8=16
Therefore, 8 fits
(x+8)^2=0
If this helps please mark as brainliest
Complementary angles have a sum of 90
32+2x+14=90
2x+46=90
2x=44
x=22 the second angle is 58
2(22)+14=58
Answer:
Check Explanation
Step-by-step explanation:
5b = 25 (equation)
5b (neither)
5(3+4) (expression)

<h2>
Explanation:</h2>
An exponential function is given by the following form:

Here we know two points:

![\bullet \ (0,6) \\ \\ x=0, \ y=6 \\ \\ 6=ab^0 \\ \\ \boxed{a=6} \\ \\\ \\ \bullet \ (3,750) \\ \\ x=3, \ y=750 \\ \\ 750=6b^3 \\ \\ b^3=\frac{750}{6} \\ \\ b=\sqrt[3]{125} \\ \\ \boxed{b=5}](https://tex.z-dn.net/?f=%5Cbullet%20%5C%20%280%2C6%29%20%5C%5C%20%5C%5C%20x%3D0%2C%20%5C%20y%3D6%20%5C%5C%20%5C%5C%206%3Dab%5E0%20%5C%5C%20%5C%5C%20%5Cboxed%7Ba%3D6%7D%20%5C%5C%20%5C%5C%5C%20%5C%5C%20%5Cbullet%20%5C%20%283%2C750%29%20%5C%5C%20%5C%5C%20x%3D3%2C%20%5C%20y%3D750%20%5C%5C%20%5C%5C%20750%3D6b%5E3%20%5C%5C%20%5C%5C%20b%5E3%3D%5Cfrac%7B750%7D%7B6%7D%20%5C%5C%20%5C%5C%20b%3D%5Csqrt%5B3%5D%7B125%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7Bb%3D5%7D)
Finally, our exponential function is:

<h2>Learn more:</h2>
Behavior of functions: brainly.com/question/12891789
#LearnWithBrainly
Answer:
see below
Step-by-step explanation:
some of your answers that you currently have are wrong, I'll note those mistakes below
- when factoring (ie 5x+15) only factor out things that can divide both numbers into a whole number ratio
5x+15 = 5(x+3), not (x+3)(x+5)
ie 
we see that 10x can divide the numerator in a whole number ratio
= 10x(x+2), not (x+2)(x+10)
second mistake: the first binomial expansion is incorrect.
you have the expansion formula right, but you added terms wrong, go look at it again
3. x^2+3x+2/ x^2+5x+6
(x+1)(x+2)/(x+3)(x+2)
(x+1)/(x+3)
4. (x^2+6x+8)/(x^2-16)
(x+4)(x+2)/(x+4)(x-4)
(x+2)/(x-4)
5. we can't simplify that any more, x and y are different variables so therefore we cannot cross out stuff on numerator and denominator
6. (x^4y^6)^2
(x^4y^6)(x^4y^6) = 
remember that (x^a)(x^b) = x^(a+b)
or remember that (x^a)^b = x^ab