Answer:
The answer is A 21
Step-by-step explanation:
first off let's notice that the height is 11 meters and the volume of the cone is 103.62 cubic centimeters, so let's first convert the height to the corresponding unit for the volume, well 1 meters is 100 cm, so 11 m is 1100 cm.
![\textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=\stackrel{cm^3}{103.62}\\ h=\stackrel{cm}{1100} \end{cases}\implies 103.62=\cfrac{\pi r^2 (1100)}{3} \\\\\\ 3(103.62)=1100\pi r^2\implies \cfrac{3(103.62)}{1100\pi }=r^2 \\\\\\ \sqrt{\cfrac{3(103.62)}{1100\pi }}=r\implies \stackrel{cm}{0.00510199305952} \approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D%5Cstackrel%7Bcm%5E3%7D%7B103.62%7D%5C%5C%20h%3D%5Cstackrel%7Bcm%7D%7B1100%7D%20%5Cend%7Bcases%7D%5Cimplies%20103.62%3D%5Ccfrac%7B%5Cpi%20r%5E2%20%281100%29%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%203%28103.62%29%3D1100%5Cpi%20r%5E2%5Cimplies%20%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%3Dr%5E2%20%5C%5C%5C%5C%5C%5C%20%5Csqrt%7B%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B0.00510199305952%7D%20%5Capprox%20r)
Answer:
The entropy change AS, for an ideal gas is given by: dt V Where T is the thermodynamic temperature, V is the volume and R=8.314. Determine the entropy change when a gas expands from 1 litre to 3 litres for a temperature rise from 100K to 400K given that: Cv = 45 + 6 x 10-T + 8 x 10-6T2 b) The average value of a complex voltage waveform is given by: V = ( 10 (10sin ox +3sin 30x +2 sin 508) dt Evaluate Vav correct to 2 decimal places.
Answer:
For every 5 campers there are 2 counselers