1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KATRIN_1 [288]
3 years ago
13

Will give brainlist

Physics
1 answer:
Aleks [24]3 years ago
5 0

Answer:

Yes

Explanation:

There was a force, 500 lb.

and a motion in the direction of the force, in this case a negative direction.

Therefore the lifter did negative work on the mass of the  barbell against gravity.

Gravity would do positive work against the mass of weight when the lifter lowers the barbell as the force vector and the motion vector are in the same direction.

You might be interested in
Tara is an electrician. Which field of science does Tara need to know the most about in order to do her job?
katovenus [111]
Chemistry and physics
3 0
2 years ago
Two astronauts, each with a mass of 50 kg, are connected by a 7 m massless rope. Initially they are rotating around their center
kiruha [24]

Answer:

The angular  velocity is w_f =  1.531 \ rad/ s

Explanation:

From the question we are told that

     The mass of each astronauts is  m =  50 \ kg

      The initial  distance between the two  astronauts  d_i  =  7 \  m

Generally the radius is mathematically represented as r_i  =  \frac{d_i}{2} = \frac{7}{2}  =  3.5 \  m

      The initial  angular velocity is  w_1 = 0.5 \  rad /s

       The  distance between the two astronauts after the rope is pulled is d_f =  4 \  m

Generally the radius is mathematically represented as r_f  =  \frac{d_f}{2} = \frac{4}{2}  =  2\  m

Generally from the law of angular momentum conservation we have that

           I_{k_1} w_{k_1}+ I_{p_1} w_{p_1} = I_{k_2} w_{k_2}+ I_{p_2} w_{p_2}

Here I_{k_1 } is the initial moment of inertia of the first astronauts which is equal to I_{p_1} the initial moment of inertia of the second astronauts  So

      I_{k_1} = I_{p_1 } =  m *  r_i^2

Also   w_{k_1 } is the initial angular velocity of the first astronauts which is equal to w_{p_1} the initial angular velocity of the second astronauts  So

      w_{k_1} =w_{p_1 } = w_1

Here I_{k_2 } is the final moment of inertia of the first astronauts which is equal to I_{p_2} the final moment of inertia of the second astronauts  So

      I_{k_2} = I_{p_2} =  m *  r_f^2

Also   w_{k_2 } is the final angular velocity of the first astronauts which is equal to w_{p_2} the  final angular velocity of the second astronauts  So

      w_{k_2} =w_{p_2 } = w_2

So

      mr_i^2 w_1 + mr_i^2 w_1 = mr_f^2 w_2 + mr_f^2 w_2

=>   2 mr_i^2 w_1 = 2 mr_f^2 w_2

=>   w_f =  \frac{2 * m * r_i^2 w_1}{2 * m *  r_f^2 }

=>    w_f =  \frac{3.5^2 *  0.5}{  2^2 }

=>   w_f =  1.531 \ rad/ s

       

3 0
2 years ago
On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on t
kozerog [31]

Answer:

a) 6 times farther.  b) 6 times longer.

Explanation:

Once released, in the horizontal direction, no other forces act on the ball, so it continues moving at the same initial velocity, which is given by the projection of the velocity vector in the horizontal direction, as follows:

vₓ = v* cos (25º) = 23 m/s * 0.906 = 20.8 m/s

In the vertical direction, the initial velocity is the projection of the velocity vector along the vertical axis, as follows:

vy = v* sin (25º) = 23 m/s * 0.422 = 9.72 m/s

Assuming that the acceleration is constant, and equal to 1/6*g, we can calculate the total time of flight, with the following kinematic equation for the vertical displacement:

y = voy*t - (\frac{1}{2}*\frac{g}{6} * t^{2} )

If the total displacement in the vertical direction is 0 (which means  that the time if the total time of flight), we can solve for t, as follows:

t = \frac{voy*12}{g} = \frac{9.72 m/s*12}{9.8m/s2} = 11. 9 s

On earth, this time could be calculated in the same way:

t = \frac{voy*12}{g} = \frac{9.72 m/s*2}{9.8m/s2} = 1.98 s

As the time is defined by the vertical movement, we can find the horizontal distance travelled on the moon, as follows:

Δx = v₀ₓ * t = 20.8 m/s * 11. 9 s = 248.1 m

On earth, the distance travelled had been as follows:

Δx = v₀ₓ * t = 20.8 m/s * 1.98 s = 41.3 m

⇒ Δx(moon) / Δx(earth) = 248.1 / 41.3 = 6.00

b) As we have just found, the time of flight on the moon and on the earth are as follows:

tmoon = 11. 9 s

tearth = 1.98 s

⇒ t(moon) / t(earth) = 11.9 / 1.98 = 6.0

8 0
3 years ago
What parent function have all real numbers
alexdok [17]
What are the functions?
4 0
3 years ago
A net downward force of 20 N causes a book to fall towards the ground at m/s2. What is the book’s mass? Consider air resistance
stira [4]

If we have to figure air resistance into it, then we don't have enough information to find an answer.  

If the air around it is going to have an effect on how it falls, then it'll depend on the thickness of the book, the shape of the book, whether it's a hard-cover or soft-cover, how far the covers stick out past the pages, how smooth or rough the covers are, how bumpy the binding it. and what position you hold it in before you let it go.

(THAT's why we always ignore air resistance, especially when the question is actually about gravity anyway.)

4 0
3 years ago
Other questions:
  • A man paddles a canoe at 6 km per hour. If he paddles on a river with a current of 6 km per hour, what is the speed of the canoe
    13·1 answer
  • Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of
    12·1 answer
  • When do tornadoes form?
    13·1 answer
  • In diving to a depth of 248 m, an elephant seal also moves 296 m due east of his starting point. What is the magnitude of the se
    7·1 answer
  • Which statement correctly describes magnetic field lines?
    15·2 answers
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    10·2 answers
  • How do I remove the paint from the carpet. Please I need a real answer.
    13·2 answers
  • How is an earthquake's origin and intensity identified?
    15·1 answer
  • Which action is not an example of work?
    12·1 answer
  • Am arrow of mass 1000kg is shot into a wooden block of mass 5000lg lying at rest in a smooth surface.If the arrow travels 15m/s
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!