Answer:
BI/BII = 1
Explanation:
The magnetic field due to a solenoid is given by the following formula:
![B = \mu nI\\](https://tex.z-dn.net/?f=B%20%3D%20%5Cmu%20nI%5C%5C)
where,
B = Magnetic Field due to solenoid
μ = permeability of free space
n = No. of turns per unit length
I = current passing through the solenoid
Now for the first solenoid:
![B_1 = \mu n_1I_1 \\](https://tex.z-dn.net/?f=B_1%20%3D%20%5Cmu%20n_1I_1%20%5C%5C)
For the second solenoid:
![B_2 = \mu n_2I_2\\](https://tex.z-dn.net/?f=B_2%20%3D%20%5Cmu%20n_2I_2%5C%5C)
Dividing both equations:
![\frac{B_1}{B_2} = \frac{\mu n_1I_1}{\mu n_2I_2}\\](https://tex.z-dn.net/?f=%5Cfrac%7BB_1%7D%7BB_2%7D%20%3D%20%5Cfrac%7B%5Cmu%20n_1I_1%7D%7B%5Cmu%20n_2I_2%7D%5C%5C)
here, no. of turns and the current passing through each solenoid is same:
n₁ = n₂ and I₁ = I₂
Therefore,
![\frac{B_1}{B_2} = \frac{\mu nI}{\mu nI}\\](https://tex.z-dn.net/?f=%5Cfrac%7BB_1%7D%7BB_2%7D%20%3D%20%5Cfrac%7B%5Cmu%20nI%7D%7B%5Cmu%20nI%7D%5C%5C)
<u>BI/BII = 1</u>
Answer:
A. Its translational kinetic energy is larger than its rotational kinetic energy.
Explanation:
Given that
Radius = R
Mass = M
We know that mass moment of inertia for the solid sphere
![I=\dfrac{2}{5}MR^2](https://tex.z-dn.net/?f=I%3D%5Cdfrac%7B2%7D%7B5%7DMR%5E2)
Lets take angular speed =ω
Linear speed =V
Condition for pure rolling , V= ω R
Rotation energy ,RE
![RE=\dfrac{1}{2}I\omega^2](https://tex.z-dn.net/?f=RE%3D%5Cdfrac%7B1%7D%7B2%7DI%5Comega%5E2)
![RE=\dfrac{1}{2}\times \dfrac{2}{5}MR^2\times \omega^2](https://tex.z-dn.net/?f=RE%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cdfrac%7B2%7D%7B5%7DMR%5E2%5Ctimes%20%5Comega%5E2)
![RE=\dfrac{1}{2}\times \dfrac{2}{5}MR^2\times \omega^2](https://tex.z-dn.net/?f=RE%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cdfrac%7B2%7D%7B5%7DMR%5E2%5Ctimes%20%5Comega%5E2)
![RE=\dfrac{1}{5}\times MR^2\times \omega^2](https://tex.z-dn.net/?f=RE%3D%5Cdfrac%7B1%7D%7B5%7D%5Ctimes%20MR%5E2%5Ctimes%20%5Comega%5E2)
![RE=\dfrac{1}{5}\times MV^2](https://tex.z-dn.net/?f=RE%3D%5Cdfrac%7B1%7D%7B5%7D%5Ctimes%20MV%5E2)
RE= 0.2 MV²
The transnational kinetic energy TE
![TE=\dfrac{1}{2}MV^2](https://tex.z-dn.net/?f=TE%3D%5Cdfrac%7B1%7D%7B2%7DMV%5E2)
TE= 0.5 MV²
From above we can say that transnational energy is more than rotational energy.
Therefore the answer is A.
Alex is driving at 21.2508882 miles per hour
Answer:
![Q_T=63313.5\ J](https://tex.z-dn.net/?f=Q_T%3D63313.5%5C%20J)
Explanation:
Given:
- temperature of skin,
![T_s=34^{\circ}C](https://tex.z-dn.net/?f=T_s%3D34%5E%7B%5Ccirc%7DC)
- initial temperature of steam vapour,
![T_v=100^{\circ}C](https://tex.z-dn.net/?f=T_v%3D100%5E%7B%5Ccirc%7DC)
- latent heat of steam,
![L=2256\ J.g^{-1}](https://tex.z-dn.net/?f=L%3D2256%5C%20J.g%5E%7B-1%7D)
- mass of steam,
![m=25\ g](https://tex.z-dn.net/?f=m%3D25%5C%20g)
- specific heat of water,
![c=4190\ J.kg^{-1}.K^{-1}=4.19\ J.g^{-1}.K^{-1}](https://tex.z-dn.net/?f=c%3D4190%5C%20J.kg%5E%7B-1%7D.K%5E%7B-1%7D%3D4.19%5C%20J.g%5E%7B-1%7D.K%5E%7B-1%7D)
- final temperature,
![T_f=34^{\circ}C](https://tex.z-dn.net/?f=T_f%3D34%5E%7B%5Ccirc%7DC)
<em>Assuming that no heat is lost in the surrounding.</em>
<u>We know:</u>
![Q=m.c.\Delta T](https://tex.z-dn.net/?f=Q%3Dm.c.%5CDelta%20T)
<u>Now the total heat given by the steam to form water at the given conditions:</u>
..............................(1)
where:
latent heat given out by vapour to form water of 100°C
heat given by water of 100°C to come at 34°C.
putting respective values in eq. (1)
![Q_T=m(L+c.\Delta T)](https://tex.z-dn.net/?f=Q_T%3Dm%28L%2Bc.%5CDelta%20T%29)
![Q_T=25(2256+4.19\times 66)](https://tex.z-dn.net/?f=Q_T%3D25%282256%2B4.19%5Ctimes%2066%29)
![Q_T=63313.5\ J](https://tex.z-dn.net/?f=Q_T%3D63313.5%5C%20J)
is the heat transferred to the skin.
Answer:
P V = n R T ideal gas equation
V = k T where k = a constant and equals k = n R / P
V is proportional to T when other factors are constant