Answer:
86.4 m horizontal from landing spot
Explanation:
Find out how long before the ball hits the ground
vertical speed of ball = -2 m/s gravity = - 9.81 m/s^2
find time to hit ground from 100 m
( height will be<u> zero</u> when it hits the ground)
<u>0 </u>= 100 - 2 t - 1/2 ( 9.81) t^2
use Quadratic Formula to find t = 4.32 seconds
horizontal speed of ball = 20 m/s
in 4.32 seconds it will travel horizontally 20 m/s * 4.32 s = 86.4 m
The wire vibrates back and forth between the poles of the magnet.
The frequency of the vibration is the frequency of the AC supply.
Answer:
Explanation:
Velocity of a wave is describe as
velocity =Frequency × Wavelength
Mathematically
v = fλ
Hence, Frequency, F = v / λ
Wavelength λ = v/f
So, if the frequency is kept constant, wavelength of the wave becomes directly proportional to velocity of the wave.
And this implies that, as the speed double, the wavelength is double.
Answer:
D
Explanation:
Because it is impossible for it to show the real depth of the ocean and how deep it is
Answer:
(a) 17.37 rad/s^2
(b) 12479
Explanation:
t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0
w = v / r = 99 / 0.06 = 1650 rad/s
(a) Use first equation of motion for rotational motion
w = w0 + α t
1650 = 0 + α x 95
α = 17.37 rad/s^2
(b) Let θ be the angular displacement
Use third equation of motion for rotational motion
w^2 = w0^2 + 2 α θ
1650^2 = 0 + 2 x 17.37 x θ
θ = 78367.87 rad
number of revolutions, n = θ / 2 π
n = 78367.87 / ( 2 x 3.14)
n = 12478.9 ≈ 12479