1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ankoles [38]
3 years ago
13

Is the sequence arithmetic or geometric? {3, 9, 27...}

Mathematics
2 answers:
frutty [35]3 years ago
7 0

3×3=9

9×3=27

it would be geometric bc you times it by 3

Nesterboy [21]3 years ago
3 0

Answer:

This is geometric

Step-by-step explanation:

r=3

You might be interested in
If the domain of the square root function f(x) is , which statement must be true?7 is subtracted from the x-term inside the radi
SIZIF [17.4K]

The question was incomplete. Below you will find the missing content.
The square root function f(x) is x <= 7

Options are :

A. 7 is subtracted from the x-term inside the radical.
B. The radical is multiplied by a negative number.
C. 7 is added to the radical term.
D. The x-term inside the radical has a negative coefficient.

Option D is correct, which is : The x-term inside the radical has a negative coefficient.

Given, the domain of the square root function f(x) is x <= 7
Consider the function y = √x.
The domain of this function is x ≥ 0 and the range is y ≥ 0.
The expression inside the radical must be greater than or equal to zero.
Now, if x ≤ 7
x - 7 ≤ 0
7 - x ≥ 0
And the function y = √(7-x) will have the domain x ≤ 7.
This implies that the x-term inside the radical has a negative coefficient.
Therefore, the statement that the x-term inside the radical has a negative coefficient must be true.

Learn more about function here :

brainly.com/question/17043948

#SPJ10

7 0
2 years ago
Which number can each term of the equation be multiplied by to eliminate the fractions before solving-3/4m-1/2=2+1/4m
densk [106]
<h2>Hello!</h2>

The answer is: 4

<h2>Why?</h2>

The smallest whole number we can use to multiply each term in order to eliminate the fractions is 4:

Multiplying each side of the equation by 4, we have:

Multiplying each side of the equation by 4, we have:

(\frac{-3m}{4}-\frac{1}{2})*4=(2+\frac{1}{4})*4\\\\\frac{-12m}{4} - \frac{4}{2} = 8+\frac{4m}{4}\\-3m-2=8+m\\-8-2=m+3m\\4m=-10\\m=\frac{-10}{4}=\frac{-5}{2}\\\\m=\frac{-5}{2}

Have a nice day!

8 0
3 years ago
Read 2 more answers
How do you solve this type of problem?<br> Thanks!
Stolb23 [73]
We know that the total is 180 degrees of the lines.

To find x:
(5x+20)+(4x-11) = 180
x=19

To find y, input the value of x into the equation 4x-11 since this equation is equal to 2y+19
4(19)-11 = 65
2y+19 = 65
y=23
4 0
3 years ago
Jeff's salary is 25% higher than Josh's. By how many percent is Josh's salary less than Jeff's?
svetoff [14.1K]
It is 20%.   Assume Josh is 100000 and Jeff is 125000
The formula is  (Jeff-  Josh)/Jeff * 100 = (25000)/100000 *100 = 20%
6 0
3 years ago
Prove the following
fomenos

Answer:

Step-by-step explanation:

\large\underline{\sf{Solution-}}

<h2 /><h2><u>Consider</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \dfrac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \}cos(23π+x)cos(2π+x)

<h2><u>W</u><u>e</u><u> </u><u>K</u><u>n</u><u>o</u><u>w</u><u>,</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) = sinx

\rm \: {cos \: (2\pi + x) }

\rm \: \cot \bigg( \dfrac{3\pi}{2} - x \bigg) \: = \: tanx

\rm \: cot(2\pi + x) \: = \: cotx

So, on substituting all these values, we get

\rm \: = \: sinx \: cosx \: (tanx \: + \: cotx)

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{sinx}{cosx} + \dfrac{cosx}{sinx}

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{ {sin}^{2}x + {cos}^{2}x}{cosx \: sinx}

\rm \: = \: 1=1

<h2>Hence,</h2>

\boxed{\tt{ \cos \bigg( \frac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \frac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \} = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h2>ADDITIONAL INFORMATION :-</h2>

Sign of Trigonometric ratios in Quadrants

  • sin (90°-θ)  =  cos θ
  • cos (90°-θ)  =  sin θ
  • tan (90°-θ)  =  cot θ
  • csc (90°-θ)  =  sec θ
  • sec (90°-θ)  =  csc θ
  • cot (90°-θ)  =  tan θ
  • sin (90°+θ)  =  cos θ
  • cos (90°+θ)  =  -sin θ
  • tan (90°+θ)  =  -cot θ
  • csc (90°+θ)  =  sec θ
  • sec (90°+θ)  =  -csc θ
  • cot (90°+θ)  =  -tan θ
  • sin (180°-θ)  =  sin θ
  • cos (180°-θ)  =  -cos θ
  • tan (180°-θ)  =  -tan θ
  • csc (180°-θ)  =  csc θ
  • sec (180°-θ)  =  -sec θ
  • cot (180°-θ)  =  -cot θ
  • sin (180°+θ)  =  -sin θ
  • cos (180°+θ)  =  -cos θ
  • tan (180°+θ)  =  tan θ
  • csc (180°+θ)  =  -csc θ
  • sec (180°+θ)  =  -sec θ
  • cot (180°+θ)  =  cot θ
  • sin (270°-θ)  =  -cos θ
  • cos (270°-θ)  =  -sin θ
  • tan (270°-θ)  =  cot θ
  • csc (270°-θ)  =  -sec θ
  • sec (270°-θ)  =  -csc θ
  • cot (270°-θ)  =  tan θ
  • sin (270°+θ)  =  -cos θ
  • cos (270°+θ)  =  sin θ
  • tan (270°+θ)  =  -cot θ
  • csc (270°+θ)  =  -sec θ
  • sec (270°+θ)  =  cos θ
  • cot (270°+θ)  =  -tan θ
7 0
3 years ago
Read 2 more answers
Other questions:
  • Can Someone tell me the Steps for fraction multiplication and division... please..
    7·1 answer
  • An isosceles trapezoid was broken into a rectangle and
    7·2 answers
  • Your friend has $100 when he goes to the fair He spends $10 to enter the fair and $20 on food. Rides at the fair cost $2 per nde
    11·1 answer
  • Louis wants to carpet the rectangular floor of his basement the basement has an area of 864 square feet the width of the basemen
    9·1 answer
  • How can you find a ratio in a bar graph​
    13·1 answer
  • ◕‿◕ 。◕‿◕。 。◕‿‿◕。 ^̮^ (◕‿◕) (。◕‿◕。) (。◕‿‿◕。)<br><br> 7/8 ÷ 1/4
    12·2 answers
  • Simplify the radical 4√31
    8·1 answer
  • SIMPLE QUESTION! Multiply 3x^2(5x^3)
    13·1 answer
  • . What is the total cost of 6 books at N8.50k each?​
    11·1 answer
  • 1 Find the missing side in the similar figures below:<br>​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!