Answer:

Step-by-step explanation:
You can determine this by logic. Here is what I mean:
First off, ![\displaystyle [3, 10]:](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5B3%2C%2010%5D%3A)
![\displaystyle 10 = A[3]^2 - B[3] + 7 → 10 = A9 - B3 + 7](https://tex.z-dn.net/?f=%5Cdisplaystyle%2010%20%3D%20A%5B3%5D%5E2%20-%20B%5B3%5D%20%2B%207%20%E2%86%92%2010%20%3D%20A9%20-%20B3%20%2B%207)
Now, knowing that
has to equal 3, we can find a SEPARATE common multiple for 3 and 9, and for 9 is 18, and for 3 is 15. Since these two numbers differ to 3, we get this genuine statement:
![\displaystyle 10 = 2[3]^2 - 5[3] + 7 → 10 = 2[9] - 15 + 7 → 10 = 18 - 15 + 7 → 10 = 10; -5 = B, 2 = A](https://tex.z-dn.net/?f=%5Cdisplaystyle%2010%20%3D%202%5B3%5D%5E2%20-%205%5B3%5D%20%2B%207%20%E2%86%92%2010%20%3D%202%5B9%5D%20-%2015%20%2B%207%20%E2%86%92%2010%20%3D%2018%20-%2015%20%2B%207%20%E2%86%92%2010%20%3D%2010%3B%20-5%20%3D%20B%2C%202%20%3D%20A)
_______________________________________________
![\displaystyle [2, 5]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5B2%2C%205%5D)
![\displaystyle 5 = A[2]^2 - B[2] + 7 → 5 = A4 - B2 + 7](https://tex.z-dn.net/?f=%5Cdisplaystyle%205%20%3D%20A%5B2%5D%5E2%20-%20B%5B2%5D%20%2B%207%20%E2%86%92%205%20%3D%20A4%20-%20B2%20%2B%207)
Now, knowing that
has to equal −2, we can find a SEPARATE common multiple for 2 and 4, and for 4 is 8, and for 2 is 10. Since these two numbers differ to −2, we get this genuine statement:
![\displaystyle 5 = 2[2]^2 - 5[2] + 7 → 5 = 2[4] - 10 + 7 → 5 = 8 - 10 + 7 → 5 = 5; -5 = B, 2 = A](https://tex.z-dn.net/?f=%5Cdisplaystyle%205%20%3D%202%5B2%5D%5E2%20-%205%5B2%5D%20%2B%207%20%E2%86%92%205%20%3D%202%5B4%5D%20-%2010%20%2B%207%20%E2%86%92%205%20%3D%208%20-%2010%20%2B%207%20%E2%86%92%205%20%3D%205%3B%20-5%20%3D%20B%2C%202%20%3D%20A)
So far so good!
_______________________________________________
![\displaystyle [1, 4]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5B1%2C%204%5D)
![\displaystyle 4 = A[1]^2 - B[1] + 7 → 4 = A - B + 7](https://tex.z-dn.net/?f=%5Cdisplaystyle%204%20%3D%20A%5B1%5D%5E2%20-%20B%5B1%5D%20%2B%207%20%E2%86%92%204%20%3D%20A%20-%20B%20%2B%207)
Now, knowing that
has to equal −3, we can find a SEPARATE common multiple for both ones, and for 1 is 2, and for 1 is 5. Since these two numbers differ to −3, we get this genuine statement:
![\displaystyle 4 = 2[1]^2 - 5[1] + 7 → 4 = 2[1] - 5 + 7 → 4 = 2 - 5 + 7 → 4 = 4; -5 = B, 2 = A](https://tex.z-dn.net/?f=%5Cdisplaystyle%204%20%3D%202%5B1%5D%5E2%20-%205%5B1%5D%20%2B%207%20%E2%86%92%204%20%3D%202%5B1%5D%20-%205%20%2B%207%20%E2%86%92%204%20%3D%202%20-%205%20%2B%207%20%E2%86%92%204%20%3D%204%3B%20-5%20%3D%20B%2C%202%20%3D%20A)
One more to go!
_______________________________________________
![\displaystyle [-1, 14]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5B-1%2C%2014%5D)
![\displaystyle 14 = A[-1]^2 - B[-1] + 7 → 14 = A + B + 7](https://tex.z-dn.net/?f=%5Cdisplaystyle%2014%20%3D%20A%5B-1%5D%5E2%20-%20B%5B-1%5D%20%2B%207%20%E2%86%92%2014%20%3D%20A%20%2B%20B%20%2B%207)
Now, knowing that
has to equal 7, we can find a SEPARATE common multiple for both ones, and for 1 is 2, and for 1 is 5. Since these two numbers add to 7, we get this genuine statement:
![\displaystyle 14 = 2[-1]^2 - 5[-1] + 7 → 14 = 2[1] + 5 + 7 → 14 = 2 + 5 + 7 → 14 = 14; -5 = B, 2 = A](https://tex.z-dn.net/?f=%5Cdisplaystyle%2014%20%3D%202%5B-1%5D%5E2%20-%205%5B-1%5D%20%2B%207%20%E2%86%92%2014%20%3D%202%5B1%5D%20%2B%205%20%2B%207%20%E2%86%92%2014%20%3D%202%20%2B%205%20%2B%207%20%E2%86%92%2014%20%3D%2014%3B%20-5%20%3D%20B%2C%202%20%3D%20A)
* As you know, we never had to use the y-intercept of
because that is AUTOMATICALLY our C-value when <em>x</em><em> </em>is set equaled to 0.
I am joyous to assist you anytime.