Answer:
91
Step-by-step explanation:
(2 + 5)(8 +5)
2 + 5 = 7
8 + 5 = 13
7 * 13 = 91
Since both α and β are in the first quadrant, we know each of cos(α), sin(α), cos(β), and sin(β) are positive. So when we invoke the Pythagorean identity,
sin²(x) + cos²(x) = 1
we always take the positive square root when solving for either sin(x) or cos(x).
Given that cos(α) = √11/7 and sin(β) = √11/4, we find
sin(α) = √(1 - cos²(α)) = √38/7
cos(β) = √(1 - sin²(β)) = √5/4
Now, recall the sum identity for cosine,
cos(x + y) = cos(x) cos(y) - sin(x) sin(y)
It follows that
cos(α + β) = √11/7 × √5/4 - √38/7 × √11/4 = (√55 - √418)/28
Answer:
6a+12b+18c
Each term in the bracket is multiplied by 6
Answer:
9.33
Step-by-step explanation:
Find the diagram attached, to get the length of RT, we will use the pythagoras theorem as shown:
Hyp² = opp²+adj²
Hyp = 11
Adj = 6
Opposite = RT
Substitute into the formula
11² = opp²+6²
Opp² = 11²-6²
Opp² = 121-36
Opp² = 85
Opp = 9.22
Hence the measurel RT to nearest hundredth is 9.22
Speed= distance / time = 45 / 0.75 = 60 miles per hour