1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
3 years ago
14

The sides of an oblong are in the ratio of 4:3. The oblong has a length of 12 cm and is increased by a scale factor of 2.5. What

will the increased width be
Mathematics
1 answer:
Aleksandr [31]3 years ago
4 0

Answer:

If the scale factor is increased in 2.5, the increased width will be:

  • <u>22.5 cm</u>

Step-by-step explanation:

Remember that an oblong is longer than it is wide, by this reason, the ratio of 4:3 could mean, if we give a number, by each 4 cm in the length, there is 3 cm in the width, in this form, if the oblong has a length of 12 cm, the width is:

  • 4 cm ⇒ 3 cm
  • 12 cm ⇒ x

So:

  • x=\frac{12 *3}{4}
  • x=\frac{36}{4}
  • x=9

Then, the original width is 9 cm, as the scale factor must be increased 2.5, we can multiply the found width to obtain the increased width:

  • Increased width = 9 cm * 2.5
  • <u>Increased width = 22.5 cm</u>

As you can see, <u><em>the increased widt will be 22.5 cm</em></u>.

You might be interested in
Please help me PLEASE PLEASE PLEASE PLEASE PLEASE
Aneli [31]

Step-by-step explanation:

rocket : 26 mpg

Glimmer : 484/18 = 26.89 mpg

cambria : 392/16 = 24.5 mpg

Avenger : 60/2 = 30 mpg

a. Avenger, has the highest mileage

b. cambria, has the lowest mileage

c. Avenger,Glimmer, rocket, cambria

7 0
3 years ago
What is the answer to -1 2/3 + 2 3/4 =
Cerrena [4.2K]

Answer:

-12/3 + 23/4

-4 + 5.75

1.75

4 0
4 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
The apothem is perpendicular to a side and forms two
Rus_ich [418]

Answer:

4

Step-by-step explanation:

6 0
2 years ago
2. Nicholas has a pepper shaker in the shape of a cylinder. It has a radius of 9 mm and a height of 32 mm. How much pepper will
oksian1 [2.3K]

Answer:

sefsefff

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • What is the Value of X?<br> 4x-4=4x
    15·1 answer
  • How to find answer to7.86*4.6
    7·1 answer
  • Which of the following is the inverse of y=3^x?
    11·2 answers
  • A cylindrical pool has a diameter of 20 feet and a height of 15 feet.What is the total amount of water that this pool can hold w
    8·1 answer
  • Angela has 15 chocolate cookies. She eats 6 of them, then goes to the store and buys 1 more. How many cookies does Angela have n
    11·1 answer
  • There are 100 fifth graders at Oak Ridge Elementary. Thirty-five of these students play soccer. Show what part of the fifth grad
    15·2 answers
  • A random sample of 150 children who visit the library werevasked if they prefer vanilla or chocolate. The results are shown in t
    12·1 answer
  • Please answer correctly !!!!!!!!!!!!!!!!! Will mark brainliest !!!!!!!!!!!!!!!!!!
    9·2 answers
  • C=5x+4y<br> What points maximize and minimizes
    6·1 answer
  • HELP WHAT IS THE SLOPE!!!!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!