Answer:
The table a not represent a proportional relationship between the two quantities
The table b represent a proportional relationship between the two quantities
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or 
<u><em>Verify each table</em></u>
<em>Table a</em>
Let
A ----> the independent variable or input value
B ----> the dependent variable or output value
the value of k will be

For A=35, B=92 ---> 
For A=23, B=80 ---> 
the values of k are different
therefore
There is no proportional relationship between the two quantities
<em>Table b</em>
Let
C ----> the independent variable or input value
D ----> the dependent variable or output value
the value of k will be

For C=20, D=8 ---> 
For C=12.5, D=5 ---> 
the values of k are equal
therefore
There is a proportional relationship between the two quantities
The linear equation is equal to

Answer: cos(x)
Step-by-step explanation:
We have
sin ( x + y ) = sin(x)*cos(y) + cos(x)*sin(y) (1) and
cos ( x + y ) = cos(x)*cos(y) - sin(x)*sin(y) (2)
From eq. (1)
if x = y
sin ( x + x ) = sin(x)*cos(x) + cos(x)*sin(x) ⇒ sin(2x) = 2sin(x)cos(x)
From eq. 2
If x = y
cos ( x + x ) = cos(x)*cos(x) - sin(x)*sin(x) ⇒ cos²(x) - sin²(x)
cos (2x) = cos²(x) - sin²(x)
Hence:The expression:
cos(2x) cos(x) + sin(2x) sin(x) (3)
Subtition of sin(2x) and cos(2x) in eq. 3
[cos²(x)-sin²(x)]*cos(x) + [(2sen(x)cos(x)]*sin(x)
and operating
cos³(x) - sin²(x)cos(x) + 2sin²(x)cos(x) = cos³(x) + sin²(x)cos(x)
cos (x) [ cos²(x) + sin²(x) ] = cos(x)
since cos²(x) + sin²(x) = 1
Answer:
1/25
Step-by-step explanation:
f(x)=5^x
Let x = -2
f(-2)=5^-2
We know that a^-b = 1/a^b
= 1/5^2
= 1/25
First off you need to take the square root of both sides and it leaves you with (x)(2x)= 15 then you multiple the x and it gives you 2x^2=15 then you divide by 2 and it gives you 7.5 then you take the square root of that to cancel the x^2 and it gives you x=2.7