Check the picture below.
now, we're making an assumption that, the two blue shaded region are equal in shape, and thus if that's so, that area above the 14 is 6 and below it is also 6, 14 + 6 + 6 = 26.
so hmm if we simply get the area of the trapezoid and subtract the area of the yellow triangle and the area of the cyan triangle, what's leftover is what we didn't subtract, namely the shaded region.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h~~=height\\ a,b=\stackrel{parallel~sides}{bases~\hfill }\\[-0.5em] \hrulefill\\ h=15\\ a=14\\ b=26 \end{cases}\implies A=\cfrac{15(14+26)}{2}\implies A=300 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Areas}}{\stackrel{trapezoid}{300}~~ - ~~\stackrel{yellow~triangle}{\cfrac{1}{2}(26)(9)}~~ - ~~\stackrel{cyan~triangle}{\cfrac{1}{2}(15)(6)}} \\\\\\ 300~~ - ~~117~~ - ~~45\implies 138\qquad \textit{blue shaded area}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h~~%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases~%5Chfill%20%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D15%5C%5C%20a%3D14%5C%5C%20b%3D26%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B15%2814%2B26%29%7D%7B2%7D%5Cimplies%20A%3D300%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btrapezoid%7D%7B300%7D~~%20-%20~~%5Cstackrel%7Byellow~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2826%29%289%29%7D~~%20-%20~~%5Cstackrel%7Bcyan~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2815%29%286%29%7D%7D%20%5C%5C%5C%5C%5C%5C%20300~~%20-%20~~117~~%20-%20~~45%5Cimplies%20138%5Cqquad%20%5Ctextit%7Bblue%20shaded%20area%7D)
Answer:
I don't how to exactly put the explanation in words I hope this helps you
Step-by-step explanation:
Answer:
(x+7)^2+4
Step-by-step explanation:
(x+7)^2 + 4
x^2+14x+49+4
x^2+24x+53
11/200 would be the answer yeah i know fractions :D
Answer:
Since the square root of 25 = 5 and the square root of 36 is 6 it is known that the square root of 33 is between 5 and 6.
Step-by-step explanation:
The key to this is to think about perfect squares, specifically the ones closest to 33. These are 25 and 36, which have square roots of 5 and 6 respectively. Because 33 is between these numbers, you know for certain that its square root is between <em>their</em> square roots too.
Let me know if you need a more in-depth explanation!