Since rope is parallel to the inclined plane so here we can say that net force parallel to the person which is pulling upwards must counterbalance the component of weight of the person.
Now here we will do the components of the weight of the person
given that weight of the person = 500 N
now its components are


now here as we can say that one of the component is balanced here by the normal force perpendicular to plane
while the other component of the weight is balanced by the force applied on the rope
So here the force applied on the rope will be given as


so it apply 300 N force along the inclined plane
The answer would be 2.8m height on earth takes
2.8=1/2*9.8*t^2 => <span>s = ut +1/2at^2 </span>
Complete Question:
When specially prepared Hydrogen atoms with their electrons in the 6f state are placed into a strong uniform magnetic field, the degenerate energy levels split into several levels. This is the so called normal Zeeman effect.
Ignoring the electron spin what is the largest possible energy difference, if the magnetic field is 2.02 Tesla?
Answer:
ΔE = 1.224 * 10⁻²² J
Explanation:
In the 6f state, the orbital quantum number, L = 3
The magnetic quantum number, 
The change in energy due to Zeeman effect is given by:

Magnetic field B = 2.02 T
Bohr magnetron, 

ΔE = 1.224 * 10⁻²² J