Answer:
1: toward the normal
2:away from normal
3: red because the index of refraction ( the ratio of the speed of light in a vacuum to the speed of light in a material) is increased for the slower moving waves
To do that, you must pass electric current through a substance
that electrons have to spend energy to pass through.
The substance will be one that gets warm and dissipates heat
when electric current flows through it.
We'll say that the substance has "resistance", which we can measure.
The amount of heat that appears when current flows through it
will be (current²)·(resistance).
A few examples of things used for that purpose:
-- resistors
-- burners on electric stoves
-- coils of resistor-wire in a toaster
-- aquarium heater
-- electric clothes iron
-- electric coffee pot
-- blow-dryer
-- electric hair-curling iron
-- skinny tungsten wire in a light-bulb .
The non-relativistic formula for kinetic energy for low speeds is :
K.E = 0.5mv^2 = 0.5 * 22 * (5)^2 = 275 J
Answer:
correct option is d) 7.0 x 10^-7 N
Explanation:
given data
distance = 175 picometers = 1.75 ×
m
to find out
electrical force
solution
we know atomic no of uranium is 92
and charge on electron is = 1.6 ×
C
and electrical force is express as
electrical force =
.............1
put here value we get
electrical force = 
electrical force = 6.921 ×
N
so correct option is d) 7.0 x 10^-7 N