Answer:
The value of A is 5
Step-by-step explanation:
- The number is divisible by 3 if the sum of its digits is a number
divisible by 3
- Ex: 126 is divisible by 3 because the sum of its digits = 1 + 2 + 3 = 6
and 6 is divisible by 3
- The number is divisible by 5 if its ones digit is zero or 5
- Ex: 675 is divisible by 5 because its ones digit is 5
890 is divisible by 5 because its ones digit is 0
- We are looking for the value of A in the 4-digit number 3A5A which
makes the number divisible by both 3 and 5
∵ A is in the ones position
∴ A must be zero or 5
- Let us try A = 0
∵ A = 0
∴ The number is 3050
∵ The sum of the digits of the number = 3 + 0 + 5 + 0 = 8
∵ 8 is not divisible by 3
∴ 3050 is not divisible by both 3 and 5
∴ A can not be zero
- Let us try A = 5
∵ A = 5
∴ The number is 3555
∵ The sum of the digits of the number = 3 + 5 + 5 + 5 = 18
∵ 18 is divisible by 3
∴ 3555 is divisible by both 3 and 5
∴ A must be equal 5
* <em>The value of A is 5</em>
Here is a picture of the answer:
The reflection of BC over I is shown below.
<h3>
What is reflection?</h3>
- A reflection is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is known as the reflection's axis (in dimension 2) or plane (in dimension 3).
- A figure's mirror image in the axis or plane of reflection is its image by reflection.
See the attached figure for a better explanation:
1. By the unique line postulate, you can draw only one line segment: BC
- Since only one line can be drawn between two distinct points.
2. Using the definition of reflection, reflect BC over l.
- To find the line segment which reflects BC over l, we will use the definition of reflection.
3. By the definition of reflection, C is the image of itself and A is the image of B.
- Definition of reflection says the figure about a line is transformed to form the mirror image.
- Now, the CD is the perpendicular bisector of AB so A and B are equidistant from D forming a mirror image of each other.
4. Since reflections preserve length, AC = BC
- In Reflection the figure is transformed to form a mirror image.
- Hence the length will be preserved in case of reflection.
Therefore, the reflection of BC over I is shown.
Know more about reflection here:
brainly.com/question/1908648
#SPJ4
The question you are looking for is here:
C is a point on the perpendicular bisector, l, of AB. Prove: AC = BC Use the drop-down menus to complete the proof. By the unique line postulate, you can draw only one segment, Using the definition of, reflect BC over l. By the definition of reflection, C is the image of itself and is the image of B. Since reflections preserve , AC = BC.
Answer:
there should be a pic or a diagram
Step-by-step explanation:
Answer:A point is named by its ordered pair of the form of (x, y). The first number corresponds to the x-coordinate and the second to the y-coordinate. To graph a point, you draw a dot at the coordinates that corresponds to the ordered pair.
I HOPE IT HELPS :D