QUESTION:
The code for a lock consists of 5 digits (0-9). The last number cannot be 0 or 1. How many different codes are possible.
ANSWER:
Since in this particular scenario, the order of the numbers matter, we can use the Permutation Formula:–
- P(n,r) = n!/(n−r)! where n is the number of numbers in the set and r is the subset.
Since there are 10 digits to choose from, we can assume that n = 10.
Similarly, since there are 5 numbers that need to be chosen out of the ten, we can assume that r = 5.
Now, plug these values into the formula and solve:
= 10!(10−5)!
= 10!5!
= 10⋅9⋅8⋅7⋅6
= 30240.
Answer:
see below
Step-by-step explanation:
The formula for the sum of an infinite geometric series with first term a1 and common ratio r (where |r| < 1) is ...
sum = a1/(1 -r)
Applying this to the given series, we get ...
a. sum = 5/(1 -3/4) = 5/(1/4) = 20
b. sum = d/(1 -1/t) = d/((t-1)/t) = dt/(t-1)
_____
The derivation of the above formula is in most texts on sequences and series. In general, you write an expression for the difference of the sum (S) and the product r·S. You find all terms of the series cancel except the first and last, and the last goes to zero in the limit, because r^∞ → 0 for |r| < 1. Hence you get ...
S -rS = a1
S = a1/(1 -r)
Answer:
-5
Step-by-step explanation:
from graph
Answer:
0.349
Step-by-step explanation: